
MINING MULTIDIMENSIONAL DISTINCT PATTERNS

by

Thusjanthan Kubendranathan

B.Sc. (Hons.), University of Toronto, 2005

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Thusjanthan Kubendranathan 2010

SIMON FRASER UNIVERSITY

Fall 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Thusjanthan Kubendranathan

Degree: Master of Science

Title of Thesis: Mining Multidimensional Distinct Patterns

Examining Committee: Dr. Diana Cukierman

Chair

Dr. Jian Pei

Associate Professor, Computing Science

Simon Fraser University

Senior Supervisor

Dr. Oliver Schulte

Associate Professor, Computing Science

Simon Fraser University

Supervisor

Dr. Wo-Shun Luk

Professor, Computing Science

Simon Fraser University

Examiner

Date Approved:

ii

Abstract

How do we find the dominant groups of customers in age, sex and location that were re-

sponsible for at least 85% of the sales of iPad, Macbook and iPhone? To answer such types

of questions we introduce a novel data mining task – mining multidimensional distinct pat-

terns (DPs). Given a multidimensional data set where each tuple carries some attribute

values and a transaction, multidimensional DPs are itemsets whose absolute support ratio

in a group-by on the attributes against the rest of the data set passes a given threshold. A

baseline algorithm uses BUC as our cubing algorithm, and passes two distinct sets of trans-

actions associated to the tuples of the cell to a pattern mining algorithm called DPMiner.

The use of several effective pruning techniques eliminates redundant processing of DPMiner

and reduces the runtime. The empirical study between the baseline and advanced algorithm

demonstrates that the advanced algorithm is significantly faster.

Keywords: distinct patterns, data mining, OLAP, data cube, DPMiner, BUC

iii

To my loving family for all their support.

iv

“If I have seen a little further it is by standing on the shoulders of Giants.”

— Isaac Newton, 1676

v

Acknowledgments

It is difficult to find the words to express my gratitude to my senior supervisor Dr. Jian Pei.

The quote by Isaac Newton which states “If I have seen a little further it is by standing on

the shoulders of Giants.” really does tell the story. I would like to thank Dr. Pei for showing

me the sight of research, the guidance to put them to words and the voice to articulate the

research. It would be impossible for me to have made this journey of enlightenment if it

was not for the encouragement, the patience and suggestions provided by Dr. Pei.

I would like to thank my supervisor Dr. Oliver Schulte for the encouragement and

insights on the thesis. Even though with his hectic research schedule in Germany, he found

the time to address my questions and concerns. I would also like to thank Dr. Wo-Shun

Luk, the examiner, for taking the time to review my work and to Dr. Diana Cukierman for

acting as the Chair to my thesis defense and organizing the process.

I would like to thank my wife, Savitha. As I spent many tireless and sleepless nights

working away on my thesis, she was there with encouragement and support. She gave me

the strength and confidence to complete my research.

I would like to thank Greg Baker, Zhi Min Tang, Sharmila Sivasankaran, Annan Harley,

Premini Manivannan, Thivya Sornalingam, Scott Hadfield, and Sajeev Vijayakumar for

taking their precious time to review my thesis.

Last, but definitely not least, I would like to thank my parents, my sister, my brothers,

Val Galat, Computing Science staff and my friends for all their support and encouragement

throughout the years.

vi

Contents

Approval ii

Abstract iii

Dedication v

Quotation vi

Acknowledgments vii

Contents viii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Mining Distinct Patterns . 2

1.1.2 Mining Multidimensional Distinct Patterns 3

1.1.3 Motivation for Utilizing a Data Cube 4

1.2 Challenges and Contributions . 5

1.2.1 Our Contributions . 6

1.3 Organization of the Thesis . 7

2 Problem Formulation 8

2.1 Multidimensional Databases . 8

vii

2.2 Aggregate Cells . 9

2.3 Distinct Patterns . 11

2.4 The Concentrate Cell Problem . 13

2.5 Cubing Method . 17

3 Related Work and Baseline Algorithm 19

3.1 Bottom Up Cubing . 19

3.2 Frequent Pattern Mining . 21

3.3 DPMiner Algorithm . 24

3.4 Implementation . 25

3.5 Adapting DPMiner for Distinct Patterns . 28

3.6 Summary . 30

4 Pruning Techniques 31

4.1 Calculating Distinct Patterns in Descendants from Ancestors 31

4.2 Pruning Child Cells Based on the Support of the Parent Cell 34

4.3 Sorting by Turned off Transactions . 36

4.4 Max Group-by of Distinct Patterns . 39

4.5 Summary . 40

5 Experimental Results and Performance Study 42

5.1 The Dataset . 42

5.2 Comparative Performance Study and Analysis 43

5.2.1 Evaluating the BUC Implementation 43

5.2.2 Varying the number of tuples . 44

5.2.3 Varying the support threshold . 45

5.2.4 Varying the number of dimensions . 45

5.2.5 Varying the cardinality of the dimensions 47

5.2.6 Varying the distribution of the dimensions 47

5.3 Summary . 51

6 Conclusions 52

6.1 Summary of the Thesis . 52

6.2 Future Work . 53

viii

Bibliography 54

Index 57

ix

List of Tables

1.1 MDB on sales data . 4

2.1 MDB on sales data . 8

2.2 Simplified MDB on the survey of sales . 9

3.1 An sample transaction database [23]. 22

4.1 Sample table to demonstrate Theorem 5 . 36

5.1 Characteristics of the benchmark datasets . 43

5.2 Runtime comparison between the Baseline and MDPM algorithm for each of

the benchmark dataset . 45

x

List of Figures

2.1 Lattice of Cuboids [4]. 10

3.1 BUC Process Tree [4]. 20

3.2 BUC Partitioning [4]. 21

3.3 Lattice of Itemsets [21]. 22

3.4 A example of FP-tree based on Table 3.1 [23]. 23

4.1 Distinct Patterns of descendant cells using ancestor cells, based on Example

4.1.1. 34

4.2 Shows a snapshot of the FirstLevelDistinctPatterns after child supports

has been updated during the processing of cell s3 from Example 4.2.1 37

4.3 Sort by turned off transactions brings the non turned off transactions to the

top of the list. 38

4.4 Showing a snapshot of FirstLevelDistinctPatterns after processing the

cells from Example 4.4.1 . 40

5.1 Runtime of the BUC implementation. 44

5.2 Runtime comparison between the Baseline and MDPM algorithm by varying

support threshold . 46

5.3 Runtime comparison between the Baseline and MDPM algorithm by varying

the number of dimensions of MDB on the five benchmark data sets 48

5.4 Runtime comparison between the Baseline and MDPM algorithm by varying

the cardinality of the dimensions of MDB on the five benchmark data sets . . 49

5.5 Runtime comparison between the Baseline and MDPM algorithm by varying

the distribution of the dimensions of MDB on the five benchmark data sets . 50

xi

Chapter 1

Introduction

In recent times, data in the world has grown immensely in both size and complexity.

Through the use of tools such as Bayes Theorem, decision trees and Support Vector Ma-

chines, data mining attempts to uncover hidden patterns in data; with the ultimate goal

being to use those patterns to inform ones approach to problem solving in a particular do-

main. On the business front, data mining has become a crucial tool as a means to uncover

hidden trends and patterns of sales to gain an informational advantage over the competi-

tion. Moreover, in recent decades, it has even been used in the biomedical field, marketing,

fraud detection, natural languages and the list goes on. Thus, as the data size and complex-

ity increases, researchers constantly try to find new and innovative ways of mining useful

information.

Therefore we introduce a new kind of pattern mining called distinct patterns (DPs). A

dataset is a set of tuples of items (e.g. items we buy from a store, symptoms from diseases),

the support of an itemset X in a dataset is the total number of occurrences of X in that

dataset. A frequent itemset is an itemset such that it must have a support that is greater

than or equal to a given threshold. Thus, given two datasets of items D1 and D2, a distinct

pattern is a frequent itemset X such that the absolute support ratio of X from D2 to D1 is

greater than a given threshold.

1.1 Motivation

In this section we will motivate the distinct pattern problem. In Subsection 1.1.1, we will

apply distinct patterns to potential real world scenarios. In Subsection 1.1.2, we will further

1

CHAPTER 1. INTRODUCTION 2

extend our examples in Subsection 1.1.1 to demonstrate the application of multidimensional

distinct patterns . Finally in Subsection 1.1.3, we employ the use of data cubes to mine

multidimensional distinct patterns.

1.1.1 Mining Distinct Patterns

This subsection answers the following two questions: (1) Why do we need to mine and use

distinct patterns? (2) How can we use distinct patterns in the real world? We answer these

questions by introducing real life scenarios.

Example 1.1.1. The following is a business model example. Suppose we own a chain of

electronic stores across Canada and have the transactions of all the sales categorized by

city. Given a percentage threshold, using distinct patterns we can find out all the different

combinations of items that were bought in the different cities provided the sales of those

items occur at least the percentage threshold amount relative to all transactions of those

particular items. For example, given percentage threshold as 75%, if we find that the items

iPad, Bose Companion 5 speaker and Canon MX 320 printer were bought at least 75% of

the time in Toronto compared to all the sales of the items iPad, Bose Companion 5 speaker

and Canon MX 320 printer, then we can either advertise those items more in Toronto or

advertise more in the other cites where those items were not purchased as much. Another

business strategy using the same sceario would be if a person from Toronto buys an iPad, we

could provide suggestions of other items such as the Bose Companion 5 speaker and Canon

MX 320 printer that were also bought together with iPad. The chances of that particular

customer buying the other items suggested is increased as we have determined that 75% of

items iPad, Bose Companion 5 speaker and Canon MX 320 printer are bought together in

Toronto.

Example 1.1.2. The following is a biomedical field example. Suppose we have the symp-

toms of everyone across the world categorized by disease. Given a percentage threshold,

using distinct patterns we can find out all the different combinations of the symptoms

and the associated disease provided the symptoms occurs at least the percentage threshold

amount relative to all of those particular symptoms. For example, given percentage thresh-

old as 99.9% (albeit unlikely), if we find that the symptoms headache, vomiting, confusion,

fear of bright lights and seizures occur 99.9% of the time when a person has meningitis.

CHAPTER 1. INTRODUCTION 3

Then when a doctor sees a patient that exhibits those symptoms, he or she can then have

the patient tested for meningitis.

1.1.2 Mining Multidimensional Distinct Patterns

In this subsection, we will use the real life examples from Subsection 1.1.1 to illustrate

multidimensional distinct patterns.

Example 1.1.3. Referring back to Example 1.1.1, we have the sales categorized by city.

What if we further categorized the sales by a few more dimensions such as age group and

sex? Given a multidimensional database, we can further categorize sales to pin point the

target groups of the sales of different combinations of items. That is, we can find that iPad,

Bose Companion 5 speaker and Canon MX 320 printer were bought in Toronto 75% of the

time but also that they were bought 75% of the time by males that were 15-20 years old.

Or we find out that 80% of the items bluetooth headphones, and printers were bought by

females that were 30-40 years old. Using such information we can better advertise to a

smaller set of target groups thus decreasing the cost of advertising and at the same time

directing it at our target audience.

Example 1.1.4. Referring back to Example 1.1.2, we have the symptoms of people cat-

egorized by diseases. What if we further categorized by adding age group and location?

Using this multidimensional database, we can now not only find the disease associated to a

particular set of symptoms but we can also find the age group and location. For example,

given percentage threshold as 99.9%, again although unlikely, if we find that the symptoms

headache, vomiting, confusion, fear of bright lights and seizures occur 99.9% of the time

when a person has meningitis that is 20-30 years old from Africa. Then when a doctor sees

a patient from Africa who is 20-30 years old that exhibits those symptoms, he or she can

then have the patient tested for meningitis. In addition, if we also add date as another di-

mension where it represents the date the person was diagnosed with that particular disease;

we can use this with varying percentage thresholds to see if the disease is being migrated to

another region. That is, if we know the symptoms with the particular disease was mostly

diagnosed in Africa in 2007 but in 2008 it was mostly diagnosed in Canada. Then we can

take measures to investigate why the disease is migrating to Canada.

CHAPTER 1. INTRODUCTION 4

Age Group Sex Job Location Transaction

15-20 M Cashier Toronto {iPad, Canon,Bluetooth,Batteries}

15-20 M Cashier Toronto {Canon,Bluetooth,Batteries}

15-20 M Cashier Vancouver {iPad,Bluetooth,Batteries}

15-20 M Tutor Vancouver {Canon,Bluetooth,Batteries}

15-20 M Tutor Toronto {Canon,Batteries, TV }

20-25 F Teacher Toronto {iPad,Batteries, TV }

20-25 F Tutor Toronto {Canon,Bluetooth,Batteries, TV }

20-25 F Teacher Toronto {iPad,Batteries, TV }

30-35 F Tutor Vancouver {iPad,Bluetooth, TV }

30-35 F Cashier Toronto {iPad,Bluetooth,Batteries}

30-35 F Tutor Toronto {Bluetooth,Batteries, TV }

30-35 F Teacher Toronto {iPad,Bluetooth,Batteries, TV }

Table 1.1: MDB on sales data

1.1.3 Motivation for Utilizing a Data Cube

Table 1.1 is an example of a multidimensional database. It represents the transactions and

the attributes of the customer for each transaction. Using data cube [10], if we want to find

all the transactions from Toronto, it can be done by matching the query {Age Group = *,

Sex = *, Job = *, Location = Toronto} where the *’s represent any values from that column.

If we want all the transactions that were bought by females, it can be done by matching

the query {Age Group = *, Sex = F, Job = *, Location = *}. Using on-line analytical

processing (OLAP) we can make use of the roll-up and drill-down operations where we

set more dimensions to *’s or less dimensions to *’s respectively to find the transactions

associated to the matching query. In the event that we have a multi-level hierarchy, we

collapse the concept hierarchies to form extra dimensions in the multidimensional database.

For example, suppose we have a dimension location which has a concept hierarchy of country,

province and city. We would collapse the concept hierarchy and expand the multidimensional

database where we now have the extra three dimensions, country, province and city. Thus, it

is logically sound to apply the data cube model to be able to uncover distinct patterns from

different matching queries. The cube based structure also allows OLAP query answering

techniques to be applied such as point queries (seeking a cell, sub-cube queries (seeking an

entire group-by), and top-k queries (seeking k most relevant cells).

CHAPTER 1. INTRODUCTION 5

1.2 Challenges and Contributions

Mining distinct patterns on two datasets can be easily done by passing the datasets to any

frequent pattern mining algorithm, retrieving the supports of the itemsets and determining

if the absolute support ratio is above a given threshold. However, we present a problem

where we would like to mine distinct patterns from a multidimensional database. A multi-

dimensional database is where each dimension can be such attributes as age, sex, location,

time, symptom and etc and the transactions associated to each tuple in the multidimensional

database are items from that particular domain such as transactions of purchases of store

items, symptoms of disease and etc. Table 1.1 shows an example of such a multidimensional

database of purchases from an electronic store where each tuple shows the age, sex, job and

location of the person that made each of the associated transactions.

Given a threshold, we wish to find all possible different combinations of dimensions

such that the absolute support ratios of the frequent itemsets are greater than or equal to

the threshold. In which case, those frequent itemsets would be distinct patterns for those

particular sets of dimensions. The Example 1.2.1 using Table 1.1 illustrates the idea and

demonstrates why the complexity of the baseline approach to the problem is exponential.

Example 1.2.1. A local electronics merchant has been advertising a set of products in

the places he believes his target group to be frequent. However, he is puzzled the sales

do not reflect on the amount of advertising, and so he has doubts about his strategy. He

conducts a survey with all his customers. The results of the survey are shown in Table 1.1.

The merchant wishes to find the itemsets that are most bought together and the groups

associated to them. So using the results from the table he continuously groups the table into

two distinct sets, one that matches a criteria on the attributes such as age 15-20 and male and

the other on the rest that are not 15-20 and not male. From this table of 4 dimensions, there

are 24 = 16 possible ways of grouping: [(age), (age,sex), (age,sex,job), (age,sex,job,location),

(age,sex), (age,job), (age,job,location), (age,location), (sex), (sex,job), (sex,job,location),

(sex,location), (job), (job,location), (location), (entire database)]. However, this is not the

total number of times he needs to run the pattern miner on the two distinct datasets. In

each of those possible ways of grouping, he would need to group by on each of the particular

attributes. For example when grouping by on age, he would need to group by on (15-20,

20-25, 30-35) and when doing (age,sex) he would need to group by on (15-20,M), (15-20,F),

(20-25,M), (20-25,F), (30-35,M) and (30-35,F) and etc. He soon realizes that doing this

CHAPTER 1. INTRODUCTION 6

experiment manually could be quite time consuming and frustrating.

If we were to conduct the experiment from Example 1.2.1 on Table 1.1 using a threshold

of 75%, we would find such distinct patterns as follows: itemset {Canon, Bluetooth} are

bought together atleast 75% of the time by males that are 15-20, itemset {iPad, Batteries,

TV} are bought together by females from Toronto, itemset {iPad, Bluetooth, Batteries}

were bought together by people who work as cashiers and so forth. We can then use this

information to advertise to the appropriate target group.

Another business model example is where a grocery store owner is concerned that a lot

of his goods have gone bad before they are bought by customer. For this case, we can have

a multidimensional database where dimensions are month, days of the week (e.g. Saturday,

Sunday, Monday) and hour and the transactions associated to those purchases. From this

we can determine the distinct patterns where for a given threshold like 70%, all the itemsets

of goods that are bought and the month, day of the week, and the hour they are bought.

Suppose for example customers bought for 70% of the time milk, bread, lettuce on Sunday’s

from 6pm - 8pm. He can then make sure that he orders those items so that they are freshly

available for Sunday afternoons.

1.2.1 Our Contributions

In this thesis, we present a new type of pattern mining called distinct patterns. To tackle

the distinct pattern mining problem, we propose a novel data model by integrating an

efficient frequent pattern miner called DPMiner [15] with the traditional data cube [10].

Conceptually, the data cube is an extended database with aggregates on multiple levels

and multiple dimensions [14]. It generalizes the group-by operator by precomputing and

storing group-bys with regard to all possible combinations of dimensions. We use Bottom Up

Cubing (BUC) as our cubing algorithm because this type of a cubing strategy allows pruning

of descendant cells based on ancestor cells. The baseline approach would call DPMiner 2n

times the size of each group-by where n is the number of dimensions. As can be seen from

the experiments, this exponential baseline algorithm is not feasible as the number of tuples

and dimensions grow.

We propose several interesting pruning techniques to the baseline algorithm. We report

an extensive empirical study using synthetic datasets to verify our advanced algorithm is

much faster than the baseline, and in some cases even several orders of magnitude faster.

CHAPTER 1. INTRODUCTION 7

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we formulate the problem of

distinct pattern mining using data cubes. In Chapter 3, we introduce the baseline algorithm

and provide psuedocode to the baseline algorithm. In Chapter 4, we provide several effec-

tive pruning techniques to the baseline algorithm. In Chapter 5, we provide an extensive

empirical study comparing the baseline algorithm to the advanced algorithm. Finally, in

Chapter 6 we conclude the thesis.

Chapter 2

Problem Formulation

2.1 Multidimensional Databases

Consider an (n + 1)-dimensional table defined as MDB = (D1, D2, ..., Dn, T), where D1,

D2,...,Dn are the dimensions and T is the field of transactions. A transaction is defined as

T ⊆ I where I is the set of alphabets and T = 2I . Consider the following example of a

survey of customer data on the items that were purchased from a particular store.

Age Group Sex Job Location Transaction

15-20 M Cashier Toronto {t1, t2, t3, t4}

15-20 M Cashier Toronto {t2, t3, t4}

15-20 M Cashier Vancouver {t1, t3, t4}

15-20 M Tutor Vancouver {t2, t3, t4}

15-20 M Tutor Toronto {t2, t4, t5}

20-25 F Teacher Toronto {t1, t4, t5}

20-25 F Tutor Toronto {t2, t3, t4, t5}

20-25 F Teacher Toronto {t1, t4, t5}

30-35 F Tutor Vancouver {t1, t3, t5}

30-35 F Cashier Toronto {t1, t3, t4}

30-35 F Tutor Toronto {t3, t4, t5}

30-35 F Teacher Toronto {t1, t3, t4, t5}

Table 2.1: MDB on sales data

For simplicity, we will use Table 2.2 as our running example, where each attribute value

is represented by a simple symbol.

We define the following notations: For any tuple t in MDB, t.Di is the value of dimension

8

CHAPTER 2. PROBLEM FORMULATION 9

Row ID A S J L Transaction

r1 a1 s1 j1 l1 {t1, t2, t3, t4}

r2 a1 s1 j1 l1 {t2, t3, t4}

r3 a1 s1 j1 l2 {t1, t3, t4}

r4 a1 s1 j2 l2 {t2, t3, t4}

r5 a1 s1 j2 l1 {t2, t4, t5}

r6 a2 s2 j3 l1 {t1, t4, t5}

r7 a2 s2 j2 l1 {t2, t3, t4, t5}

r8 a2 s2 j3 l1 {t1, t4, t5}

r9 a3 s2 j2 l2 {t1, t3, t5}

r10 a3 s2 j1 l1 {t1, t3, t4}

r11 a3 s2 j2 l1 {t3, t4, t5}

r12 a3 s2 j3 l1 {t1, t3, t4, t5}

Table 2.2: Simplified MDB on the survey of sales

i where i ≤ n, and t.T is the transactions for tuple t.

2.2 Aggregate Cells

The concept of data cubes was introduced by Gray et al. [10] as a way to answer On-line

Analytical Processing (OLAP) queries on a multidimensional database. An aggregate cell

(or a cell for short) in a multidimensional database is defined as follows:

Definition 2.2.1. (Aggregate Cell). Given x1, x2, ..., xn, where xi ∈ Di ∪ {∗} and ∗ is

a meta symbol meaning that attribute is generalized, and t be a tuple in MDB, cell c =

(x1, x2, ..., xn) is defined as: cell tuples = {t|t.Di = xi, xi 6=
′ ∗′}, and the complement of c

is c = {t|t /∈ c}

An aggregate cell is a group-by in a relational database.

A data cube is the set of all possible aggregate cells on a given relational table. These

aggregate cells can be organized into cuboids. A cuboid is a set of aggregate cells gen-

eralizing the same dimensions. We use the notations A, AB, ABC and so on to refer to

cuboids (A,*,*,*), (A,B,*,*), (A,B,C,*), respectively. Data cubing is the process of con-

structing a data cube based on a multidimensional table which is referred to as the base

CHAPTER 2. PROBLEM FORMULATION 10

table. In data cubing, an aggregated measure is computed for each aggregate cell. Com-

monly used measures include count, sum, min, max represented in cell notation as cell

c = (x1, x2, ..., xn) : measure. There exists an ancestor-descendant relationship between

cells. For two cells c1 = (x1, x2, ..., xn) and c2 = (y1, y2, ..., yn), if c1 6= c2 and either xi = yi

or xi =
′ ∗′, for each 1 ≤ i ≤ n then, c1 is an ancestor of c2 and c2 is a descendant of c1

denoted by c1 ≻ c2. Particularly, c2 is a child of c1 and c1 is a parent of c2 if for exactly one

dimension xi =
′ ∗′ and yi 6=

′ ∗′.

Example 2.2.1. Using Table 2.2, consider the cells a = {a1, ∗, ∗, ∗}, b = {a1, ∗, j1, ∗},

c = {a1, ∗, j1, l1} and d = {a1, s1, j1, l1}. Then we have the relations a ≻ d, c, and b; b ≻ d

and c; c ≻ d. Further c is a parent of d and d is a child of c; b is a parent of c and c is a

child of b; a is a parent of b and b is a child of a;

Figure 2.1 represents a lattice of cuboids. A data cube is represented as a lattice of

cuboids where each cuboid represents a different group-by. Notice however that this data

cube is bottom up where the apex cell is at the bottom and the base cell is at the top. The

reason for which we will explain later in this chapter.

Figure 2.1: Lattice of Cuboids [4].

The base cuboid is the aggregate cells that do not generalize any dimensions. The apex

is the most generalized cuboid, commonly represented as ALL. It contains one value, the

aggregated measure M for all tuples stored in the base cuboid. A cell from the base cuboid is

known as the base cell. Given an n-dimensional data cube. Let c = (x1, x2, ..., xn) represent

a particular cell in the data cube. We say a cell c = (x1, x2, ..., xn) is an m-dimensional cell

CHAPTER 2. PROBLEM FORMULATION 11

if for m ≤ n, m values of x1, x2, ..., xn are not ’*’. If m = n, c represents a cell from the

base cuboid.

Example 2.2.2. Using Table 2.2, Let us consider the cuboid (A,*,*,*). The cuboid (A,*,*,*)

contains the cells: (a1,*,*,*), (a2,*,*,*), (a3,*,*,*). The cells (a1,*,*,*) and (*,*,s1,*) are

examples of 1-D cells, (*,s1,j1,*), (*,*,j2,l2) are 2-D cells, (a2,*,j3,l1) is a 3-D cell and

(a3,s2,j3,l1) is a 4-D cell. Here the 1-D, 2-D, and 3-D cells are aggregate cells whereas the

4-D cells are base cells.

The aggregate measure for each group-by is defined as follows:

Definition 2.2.2. (Aggregate Function). Given an MDB and a cell c, our aggregate func-

tion F (c) is defined as:

F (c) = 〈PC,NC〉 ,

where PC = {t.T | t ∈ c } and NC = {t.T | t ∈ c }. PC is the positive set of transactions

and NC is the negative set of transactions.

We use the following notations to represent the measures of a cell: Given a cell c =

(a1, s1, ∗, ∗) :< PC,NC >. c.PC represents the PC set from the aggregate function F (c)

and c.NC represents the NC set from the aggregate function F (c)

Example 2.2.3. Using Table 2.2. Suppose cell c = (a1, ∗, ∗, ∗). The measures of cell c

are defined by the aggregate function F (c) such that c.PC = {t.T |c.D1 = a1, t ∈ c} and

c.NC = {t.T |c.D1 6= a1, t ∈ c}. Thus the set of transactions for c.PC is: { {t1,t2,t3,t4},

{t2,t3,t4}, {t1,t3,t4}, {t2,t3,t4}, {t2,t4,t5} } and c.NC is: { {t1,t4,t5}, {t2,t3,t4,t5}, {t1,t4,t5},

{t1,t3,t5}, {t1,t3,t4}, {t3,t4,t5}, {t1,t3,t4,t5} } . Thus cell c is defined as c = (a1,*,*,*): 〈 {

{t1,t2,t3,t4}, {t2,t3,t4}, {t1,t3,t4}, {t2,t3,t4}, {t2,t4,t5} }, { {t1,t4,t5}, {t2,t3,t4,t5}, {t1,t4,t5},

{t1,t3,t5}, {t1,t3,t4}, {t3,t4,t5}, {t1,t3,t4,t5} } 〉)

We now have the following property.

Property 2.2.1. Given a cell, c.NC = c.PC, and c.PC = c.NC

2.3 Distinct Patterns

Given the set of transactions T and an itemset X, the absolute support of X is defined as:

SupT (X) = |{t|t ∈ T,X ⊆ t}|

CHAPTER 2. PROBLEM FORMULATION 12

Definition 2.3.1. (Distinctiveness Ratio) Given an itemset X ⊆ I, and set of transactions

D1 and D2 where D1, D2 ⊆ T . The Distinctiveness Ratio (DR) of X from D2 to D1 defined

as:

DR(X) =

0 if SupD1
(X), SupD2

(X) = 0

∞ if SupD1
(X) = 0 and SupD2

(X) 6= 0
SupD2

(X)
SupD1

(X)
Otherwise

For a predefined distinctiveness threshold ρ > 0, a Distinct Pattern is defined as

DR(X) ≥ ρ.

The concept of Emerging Patterns (EP) was defined by Dong et al. [6]. An Emerging

Pattern is defined as the itemsets whose relative support increases significantly from one

background dataset D1 to a target dataset D2 [6]. The growth rate GR(X) defined by Dong

et al. is the rate of increase of itemset X from D1 to D2. The difference between GR(X) and

DR(X) is that growth rate uses relative support defined as SupDi
(X) = |t|t ∈ Di.T |/|Di|

where as DR(X) uses absolute support.

The difference between Distinct Pattern and Emerging Pattern is that Distinct Pattern

uses the absolute support ratio of itemset X from D2 to D1 where as Emerging Pattern uses

the increase in growth rate of itemset X from D1 to D2. Thus we cannot use the Emerging

Patterns to compute Distinct Pattern.

Example 2.3.1. (Itemset X an EP but not a DP)

Using Table 2.2. Consider the following example where we show that an itemset X can be

an EP but not be a DP in the same datasets with the same threshold. Consider the cell

c = (a2, ∗, ∗, ∗) :< PC,NC > where c.PC = { {t1,t4,t5}, {t2,t3,t4,t5}, {t1,t4,t5} } and c.NC

= { {t1,t2,t3,t4}, {t2,t3,t4}, {t1,t3,t4}, {t2,t3,t4}, {t2,t4,t5}, {t1,t3,t5}, {t1,t3,t4}, {t3,t4,t5},

{t1,t3,t4,t5} }. Let ρ = 3 for both EP and DP. Suppose we have itemset X = {t1, t4, t5}.

We are testing to see if DR(X) ≥ 3, that is if X occurs 75% or more in PC or GR(X) > 3

that is X is an EP from NC to PC with a growth rate of 3. We will discuss later in this

chapter how to compute threshold from percentage.

Distinct Pattern:

SupDPC
(X) = 2, SupDNC

(X) = 1

DR(X) = 2
1 = 2 < ρ

Emerging Pattern:

CHAPTER 2. PROBLEM FORMULATION 13

SupDPC
(X) = 2

3 , SupDNC
(X) = 1

9

GR(X) = 2
3/

1
9 = 6 > ρ

As we can see, X is an EP from c to c with GR(X) = 6 > 3. However, the same itemset X

is not a distinct pattern from c to c with a DR(X) = 2 < 3.

Example 2.3.2. (Itemset X a DP but not an EP)

Using Table 2.2. Consider opposite of the previous example where we now show that an

itemset X can be a DP but not an EP. Consider the cell c = (∗, ∗, ∗, l1) :< PC,NC > where

c.PC = { {t1,t2,t3,t4}, {t2,t3,t4}, {t2,t4,t5}, {t1,t4,t5}, {t2,t3,t4,t5}, {t1,t4,t5}, {t1,t3,t4},

{t3,t4,t5}, {t1,t3,t4,t5} } and c.NC = { {t1,t3,t4}, {t2,t3,t4}, {t1,t3,t5} }. Let ρ = 3 for both

EP and DP. Suppose we have itemset X = {t3, t4}. We are testing to see if the DR(X) ≥ 3

or GR(X) > 3.

Distinct Pattern:

SupDPC
(X) = 6, SupDNC

(X) = 2

DR(X) = 6
2 = 3

Emerging Pattern:

SupDPC
(X) = 6

9 , SupDNC
(X) = 2

3

GR(X) = 6
9/

2
3 = 1 < ρ

As we can see, 75% of the occurrences of itemset X in MDB occurs in cell c and so X is a

distinct pattern of c. However, GR(X) = 1 < ρ and so X is not an EP from c to c.

From the previous two examples, we can see that an emerging pattern cannot be used to

find a distinct pattern and conversely a distinct pattern cannot be used to find an emerging

pattern.

2.4 The Concentrate Cell Problem

A cell is a minimal cell of itemset X if X is not a distinct pattern in any descendant of the

cell. We state this formally in the following theorem:

Theorem 1. (Minimal Cell)

Given an itemset X and a cell c where Supc(X) = ρ and Supc(X) = 0. For any c′ such

that c ≻ c′ and any X ′ ⊇ X, if Sup
c′
(X ′) > 0 then X ′ is not a distinct pattern in c′ and its

descendants.

CHAPTER 2. PROBLEM FORMULATION 14

Proof.

Let TotalSupport(X) = Supc(X)+Supc(X) and TotalSupport(X ′) = Supc′(X
′)+Sup

c′
(X ′).

If X ′ is a distinct pattern in c′ and its descendants then the following must hold:

TotalSupport(X) = TotalSupport(X ′) (2.1)

Assume for contradiction that X ′ is a distinct pattern of c′. Thus TotalSupport(X) =

TotalSupport(X ′). However we know that Sup
c′
(X ′) > 0. In order for Equation 2.1 to

hold, Supc′(X
′) < ρ. However, for X to be a distinct pattern in cell c, Supc′(X

′) > ρ. Thus

we have a contradiction where we need to have Supc′(X
′) ≥ ρ in order for X to be a DP

but we know that Supc′(X
′) < ρ since Supc′(X

′) > 0. Therefore, Equation 2.1 cannot hold

and thus TotalSupport(X) 6= TotalSupport(X ′). Contradiction. Hence X ′ is not a distinct

pattern of c′ if Supc(X) = ρ, Supc(X) = 0 and Sup
c′
(X ′) > 0.

Based on Theorem 1, we formally define a minimal cell as follows:

Definition 2.4.1. (Minimal Cell). Given an itemset X and a cell c, c is called a minimal

cell of X if and only if: (1) X is a DP in c, and (2) X is not a DP in any descendant of c.

The following example illustrates the definition of a minimal cell.

Example 2.4.1. Using Table 2.2. Consider the cells c1 = (a1, s1, ∗, ∗) :< PC,NC > and

c2 = (a1, s1, ∗, l1) :< PC,NC > where c1 ≻ c2. Let itemset X = {t2, t3, t4}. Given ρ = 3,

we can compute the DR(X) from c1 to c1 and DR(X) from c2 to c2 as follows:

Distinctiveness ratio from c1 to c1:

SupDc1.PC
(X) = 3, SupDc1.NC

(X) = 1

DR(X) = 3
1 = 3

Thus X is a DP from c1 to c1.

Distinctiveness ratio from c2 to c2:

SupDc2.PC
(X) = 2, SupDc2.NC

(X) = 2

DR(X) = 2
2 = 1

Thus X is not a DP from c2 to c2.

Since the descendant of c1 does not satisfy DR(X) condition, c1 is considered the minimal

cell of itemset X where DR(X) ≥ ρ.

CHAPTER 2. PROBLEM FORMULATION 15

Definition 2.4.2. (Concentrate Ratio). For any itemset X and cell c. The Concentrate

Ratio of X in c is defined as:

CR(X) =
Supc(X)

Supc(X) + Supc(X)
(2.2)

Given a user specified concentrate threshold α, c is a Concentrate Cell of X if

CR(X) ≥ α

We now transform the concentrate cell mining problem into the distinct patterns prob-

lem.

Theorem 2. (Concentrate Cell-Distinct Pattern). For any itemset X and cell c. C is a

concentrate cell for X with respect to concentrate threshold α if and only if X is a distinct

pattern in cell c with respect to distinctiveness threshold ρ where:

ρ =
α

1− α
(2.3)

Proof. (1). Assume c is a concentrate cell of X. That means:

Supc(X)

Supc(X) + Supc(X)
≥ α

Then, the distinctiveness ratio (DR) of X in c is:

Supc(X)

Supc(X)
≥

α

1− α

Supc(X)− αSupc(X) ≥ αSupc(X)

Supc(X) ≥ αSupc(X) + αSupc(X)

Supc(X) ≥ α(Supc(X) + Supc(X))

Supc(X)

Supc(X) + Supc(X)
≥ α

Thus, if c is a concentrate cell of X with respect to α, then X is a distinct pattern of c

where DR(X) ≥ ρ, where ρ defined by equation 2.3.

(2). Assume X is a distinct pattern of cell c. That means:

Supc(X)

Supc(X)
≥ ρ

CHAPTER 2. PROBLEM FORMULATION 16

Then, the Concentrate Ratio(CR) of X in cell c is:

Supc(X)

Supc(X) + Supc(X)
≥

ρ

1 + ρ
,

Where α was derived by rearranging equation 2.3 as follows:

ρ =
α

1− α

ρ− ρα = α

ρ = α+ ρα

ρ = α(1 + ρ)

α =
ρ

1 + ρ

Thus we have:

Supc(X)

Supc(X) + Supc(X)
≥

ρ

1 + ρ
,

Supc(X)− ρSupc(X) ≥ ρSupc(X)− ρSupc(X)

Supc(X)

Supc(X)
≥ ρ

Thus, if X is a distinct pattern of c with respect to ρ, then c is a concentrate cell of X

where CR(X) ≥ α.

Using Theorem 2, an end user can ask such queries as: What are the concentrate cells

where 75% of itemset X belong to those cells? The following example shows how we can

answer such a query.

Example 2.4.2. Given the query with a concentrate threshold of 75%, we would compute

ρ as follows:

α = 75/100 = .75

ρ =
α

1− α
=

.75

.25
= 3

Thus for itemset X and cell c, if DR(X) ≥ 3 then 75% of itemset X from MDB occurs in

cell c. In addition if DR(X) of descendants of c is < ρ, then c is the minimal cell for itemset

X.

CHAPTER 2. PROBLEM FORMULATION 17

2.5 Cubing Method

The time and space cost of cubing grows exponentially with respect to dimensionality. Given

a table with n dimensions, up to 2n group-bys are needed. Thus, scalability must be kept

in mind when choosing the appropriate cubing algorithm.

There are three types of approaches to cubing in terms of the order the cells are materi-

alized: top-down, bottom-up and hybrid. The top-down approaches such as the Multiway

Array Aggregation construct the cube from the base cells towards the apex. The bottom-up

approaches such as the BUC compute the cells from the apex towards the base. There are

other methods that combine both the top-down and the bottom-up approach to construct

the data cube such as the Star-Cubing.

We have used the Bottom Up Cubing (BUC) algorithm. BUC traverses each cuboid

from the apex towards the base. We will describe BUC in detail in the next chapter. BUC

was chosen because it allows pruning during the construction of the cubes using the Apriori

property. The Apriori property states that all nonempty subsets of a frequent itemset must

also be frequent [2]. The difference between BUC and Apriori is that the latter uses breath-

first search to generate its candidates whereas BUC uses depth-first search. For example,

Apriori would first compute all 1-D aggregate cells in one pass and prune based on those

cells. Where as BUC would compute cuboids A, AB, ABC and ABCD where it would prune

AB based on A and ABC based on AB and so on. The problem with using Apriori is the

candidate set often cannot fit in the memory as little pruning is expected during the first

few passes of the input [4]. In either case, the cells that do not pass a certain threshold are

pruned out. In our case we prune out cell c where |c.PC| < minimum support threshold.

The partially materialized cubes are referred to as iceberg cubes. Because tuples are shared

while traversing the tree, the aggregate function F (c) holds the anti-monotonic property;

that is, if the aggregate value on a cell does not satisfy the iceberg condition, then all of the

cells descending from this cell cannot satisfy the iceberg condition either. Refer to example

2.5.1. These cells and all of their descendant cells can be pruned out because descendant

cells, by definition are more specialized than their parent, as they are partitioned based on

more dimensions values than their parents. Thus if the aggregate value of a parent cell fails

the iceberg condition, then all its children must also fail the condition. We can formally

state this in a property as follows:

Property 2.5.1. Let cell X be a child of cell Y . Let P = X.PC and Q = Y.PC. The

CHAPTER 2. PROBLEM FORMULATION 18

following property holds:

P ⊆ Q

Example 2.5.1. Using Table 2.2. Consider the following two cells

Y = (a1,*,*,*): 〈 { {t1,t2,t3,t4}, {t2,t3,t4}, {t1,t3,t4}, {t2,t3,t4}, {t2,t4,t5} }, { {t1,t4,t5},

{t2,t3,t4,t5}, {t1,t4,t5}, {t1,t3,t5}, {t1,t3,t4}, {t3,t4,t5}, {t1,t3,t4,t5} } 〉)

X = (a1,*,j1,*): 〈 { {t1,t2,t3,t4}, {t2,t3,t4}, {t1,t3,t4} }, {t2,t3,t4}, {t2,t4,t5}, { {t1,t4,t5},

{t2,t3,t4,t5}, {t1,t4,t5}, {t1,t3,t5}, {t1,t3,t4}, {t3,t4,t5}, {t1,t3,t4,t5} } 〉). X is a child of Y .

The set of transactions Y.PC is Q = { {t1,t2,t3,t4}, {t2,t3,t4}, {t1,t3,t4}, {t2,t3,t4}, {t2,t4,t5}

} and X.PC is P ={ {t1,t2,t3,t4}, {t2,t3,t4}, {t1,t3,t4} }. Thus, P ⊆ Q. Suppose minimum

support for the iceberg condition was set to 5, the parent Y was pruned out as |P | < 5 and

so based on anti-monotonicity the child cell will also be pruned out as |Q| < 5.

Chapter 3

Related Work and Baseline

Algorithm

In this chapter we review the related work and the baseline algorithm[20]. Particularly, in

Section 3.1 we will discuss the BUC algorithm. Section 3.2 introduces Frequent Pattern

Mining. In Section 3.3 we discuss the DPMiner algorithm. Section 3.4 shows the imple-

mentation [20] with some slight modifications. Finally, Section 3.5 shows how we can use

DPMiner to extract distinct patterns.

3.1 Bottom Up Cubing

Bottom up cubing (BUC) constructs the data cube from the apex cuboid to the base cuboid.

Figure 3.1 shows the BUC process tree. The numbers on the vertices indicate the order in

which BUC materializes the aggregate cells.

In this section we will demonstrate the BUC algorithm by example and in Section 3.4

we will explain the BUC-DPMiner integrated algorithm. Let us see a simple example on a

table with dimensions A, B, C and D. Suppose dimension A contains four distinct values,

a1, a2, a3, a4; dimension B contains four distinct values, b1, b2, b3, b4; dimension C contains

two distinct values, c1, c2, and dimension D contains two distinct values d1, d2. We must

group-by based on every possible combination of dimensions. For simplicity we will use

count as the aggregate function and set 1 as the minimum support. That is, if the cell

count of the group-by is less than 1, then that group-by and any descendant group-by can

19

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 20

Figure 3.1: BUC Process Tree [4].

be pruned out based on the anti-monotonicity property. Figure 3.2 illustrates the group-bys

during the first four calls to BUC.

As can be seen from the BUC process tree in Figure 3.1. BUC first materializes the

most generalized group-by. Next, we group-by on dimension A producing the four cells

(a1, ∗, ∗, ∗),(a2, ∗, ∗, ∗),(a3, ∗, ∗, ∗), and (a4, ∗, ∗, ∗). If cell (a1, ∗, ∗, ∗) passes the minimum

threshold, we recurse on the cell (a1,*,*,*) and group-by on dimension B of the tuples of

the cell (a1, ∗, ∗, ∗). If count of (a1, b1, ∗, ∗) satisfies the iceberg condition then output the

aggregated measure to the cell (a1, b1, ∗, ∗) and recurse on (a1, b1, ∗, ∗) and group-by on

dimension C of the tuples of the cell (a1, b1, ∗, ∗). If the cell count of (a1, b1, c1, ∗) does

not satisfy the minimum threshold, then all descendant group-bys are pruned out. That

is the cells (a1, b1, c1, d1) and (a1, b1, c1, d2) are not materialized. BUC then backtracks to

the (a1, b1, ∗, ∗) group-by and recurses on (a1, b1, c2, ∗), and so on. BUC saves a great deal

of processing time by using the iceberg condition to prune out cells that do not meet the

minimum support.

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 21

Figure 3.2: BUC Partitioning [4].

3.2 Frequent Pattern Mining

Frequent patterns are patterns (sets of items, sequence, etc.) that occur frequently in a

database [1]. The supports of the frequent patterns must be greater than a predefined

support threshold.

A näıve approach to finding frequent patterns would be to test the supports of 2n − 1

possible itemsets where n is the number of items in the dataset against a large database.

For example, a transaction with 20 items needs to test the support of 220 − 1 = 1, 048, 575

itemsets. Thus reducing the number of itemsets that are needed to be checked and checking

the supports of only a selected itemsets efficiently would optimize the algorithm greatly.

Frequent pattern mining has been studied extensively. Apriori [2] and FP-Growth [12] are

two notable algorithms for frequent pattern mining.

Apriori[2] uses breath-first search to traverse the lattice of itemsets as shown in Figure

3.3. Each vertex represents an item in the dataset. Frequent subsets are extended one item

at a time, a process known as candidate generation. The support of each individual itemset

is calculated separately. Any itemset that does not meet the minimum support threshold

is pruned out. This is based on the property that any superset of an infrequent itemset

must also be infrequent [2]. Some of the major costs of the Apriori algorithm are: huge

number of candidate generation, multiple scans of the database, tedious support counting

of candidates.

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 22

Figure 3.3: Lattice of Itemsets [21].

FP-Growth, on the other hand, is a depth-first search algorithm that addresses the

limitations of Apriori. The first scan of the database finds all of the frequent items, ranks

them in frequency descending order, and puts them into a header table. It then compresses

the database into a prefix tree called FP-tree. For example, given a transaction database in

Table 3.1 [23], and a minimum support of 3, FP-Growth would build the FP-tree shown in

Figure 3.4.

TID Items (Ordered) Frequent Items

100 f, a, c, d, g, i,m, p f, a, c,m, p

200 a, b, c, f, l,m, o f, c, a, b,m

300 b, f, h, j, o f, b

400 b, c, k, s, p c, b, p

500 a, f, c, e, l, p,m, n f, c, a,m, p

Table 3.1: An sample transaction database [23].

The first scan of Table 3.1 derives the list of frequent items, 〈(f : 4), (c : 4), (a : 3),

(b : 3), (m : 3), (p : 3)〉, where the number after“:” indicates the support. As can be

seen, any item with a support less than 3 is excluded from this list. Second, the FP-tree

is constructed by scanning the transaction database again. The root of the tree is labeled

with “null”. Scanning the first transaction creates the first branch of the tree: 〈(f : 1),

(c : 1), (a : 1), (b : 1), (m : 1), (p : 1)〉. When scanning the second transaction, the

ordered frequent item list 〈f, c, a, b,m〉 shares the common prefix 〈f, c, a〉 with the existing

〈f, c, a,m, p〉. Thus increment the count of each of the shared items, create a new node

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 23

Figure 3.4: A example of FP-tree based on Table 3.1 [23].

for the remaining items and link each item back to the previous item in the list. This

process is repeated for each transaction in the database. The benefits of FP-tree are as

follows: long patterns in any transaction remain unbroken; complete information preserved

for frequent pattern mining without having to scan the database anymore, all infrequent

items are removed; the more frequent an item is, the more likely to be shared, and is never

larger than the original database, not counting the node-links and the count fields. The

FP-Growth algorithm defined by Pei et al.[23] is as follows:

• For each frequent item, construct its projected database, and then its projected FP-

tree

• Repeat the process on the newly created projected FP-tree until the resulting FP-tree

is empty, or contains only one path.

Next, we define two special types of frequent patterns: the closed frequent patterns and

frequent generators.

Definition 3.2.1. (Closed Pattern and Generator) An itemset X is closed in dataset D if

there exists no proper super-itemset Y such that X ⊂ Y and support(X) = support(Y) in

D. X is a closed frequent pattern in D if it is both closed and frequent in D [11].

An itemset Z is a generator in D if there exists no proper sub-itemset Z ′ such that

Z ′ ⊆ Z and support(Z ′) = support(Z) [18].

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 24

An equivalent class EC is “a set of itemsets that always occur together in some trans-

actions of dataset D”. That is, for all X ∈ EC and Y ∈ EC, fD(X) = fD(Y), where

fD(Z) = {T ∈ D|Z ⊆ T} [15]. Frequent equivalence classes can be uniquely represented

by a set of generators G and their associated closed frequent patterns C, in the form of

EC = [G, C].

3.3 DPMiner Algorithm

DPMiner stands for Discriminative Pattern Miner. It finds closed frequent patterns and

frequent generators simultaneously to form equivalent classes. Given a dataset D, suppose

D can be divided into various disjoint classes, denoted by D = D1 ∪D2 ∪ ... ∪Dn. Let δ be

a small number (usually 1 or 2), θ be the minimum support, EC be a frequent equivalence

class of D, and C be a closed pattern of EC. An equivalent class EC is a δ-discriminative

equivalent class provided that its closed pattern C’s support is greater than θ in Di but

less than δ in D − Di where i ≤ n. Furthermore, EC is a non-redundant δ-discriminative

equivalent class if and only if (1) it is δ-discriminative, (2) there exists no ÊC such that

Ĉ ⊆ C, where Ĉ and C are the closed patterns of ÊC and EC respectively.

Data Structures and Computational Steps of The DPMiner

DPMiner uses a modified FP-tree structure. Normal FP-Tree stores all frequent items

sorted by descending frequency in the header table. DPMiner however does not store any

frequent items with a full support. That is, those items that appear in every transaction of

the original database or conditional projected databases must be removed from the header

table of FP-trees. The anti-monotonic property of generators states that for X as a frequent

itemset of D, X is a generator if and only if sup(X,D) < sup(Y,D) for every immediate

proper subset Y of X. Thus the reason for such a FP-tree modification is that those items

and the itemsets containing them are not generators due to the anti-monotonic property of

generators. This modification often leads to much smaller tree structures [15].

Given k non-empty classes of transactions D1,D2, ...,Dk, a minimal support threshold θ

and a maximal threshold δ, the method to discover equivalence classes for the k classes of

transactions consists of the following 5 steps:

1. Let D =
⋃k

i=1Di.

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 25

2. Construct a FP-tree based on D and run a depth-first search on the tree to find

frequent generators and closed patterns simultaneously. For each search path along

the tree, the search terminates whenever a δ-discriminative equivalent class is reached.

3. For every frequent closed pattern X, determine the class label distribution. That is,

find the class where a closed pattern has the highest support. This step is necessary

because patterns are not mined separately for each Di (1 ≤ i ≤ k), but rather on the

entire D.

4. Pair generators and closed frequent patterns to form δ-discriminative equivalent classes.

5. Output the non-redundant δ-discriminative equivalent classes where EC = [G, C].

3.4 Implementation

The following is the pseudocode for the baseline algorithm [20]. It carries out a depth-first

search to build data cubes and mine δ-discriminative patterns simultaneously.

Algorithm

Procedure ButtomUpCubeWithDPMiner(data, dim, theta, delta)

Inputs:

data: the dataset upon which we build our integrated model.

dim: number of standard dimensions in input data.

theta: the minimal support threshold of candidate patterns

in the target class.

delta: the maximal support threshold of candidate patterns

in the background class.

Outputs:

cells with their measures (patterns)

Method:

1: if (data.count == 1) then

2: writeAncestors(data, dim);

3: return;

4: endif

5: for each dimension d (from 0 to (dim - 1)) do

6: C := cardinality(d);

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 26

7: newData := partition(data, d); // counting sort.

8: for each partition i (from 0 to (C - 1)) do

9: cell := createEmptyCell();

10: posData := newData.gatherPositiveTransactions();

11: negData := newData.gatherNegativeTransactions();

12: isDuplicate := determineCoverage(posData, negData);

13: if (!isDuplicate) then

14: cell.measure := DPMiner(posData, negData, theta, delta);

15: writeOutput(cell);

16: subData := newData.getPartition(i);

17: ButtomUpCubeWithDPMiner(subData, d+1, theta, delta);

18: endif

19: endfor

20: endfor

The Execution Flow

Let us illustrate the execution flow using a simple example on a multidimensional database

MDB with dimensions A, B, C and D. Suppose dimension A contains four distinct values,

a1, a2, a3, a4; dimension B contains four distinct values, b1, b2, b3, b4; dimension C contains

two distinct values, c1, c2, and dimension D contains two distinct values d1, d2. Lines 1-4

are optimizations and we will discuss them later in this section.

To begin, we loop through each of the dimensions of MDB (line 5). We then determine

the cardinality of the dimension we are currently traversing (line 6). In the first iteration we

will determine the cardinality of dimension A to be four. We then group-by on dimension A

to produce the four aggregate cells (a1, ∗, ∗, ∗), (a2, ∗, ∗, ∗), (a3, ∗, ∗, ∗) and (a4, ∗, ∗, ∗) (line

7). Each group-by is sorted linearly using the counting sort algorithm. It was found that

the use of CountingSort to be an important optimization to BUC [4].

The algorithm then iterates over each of the aggregate cells to mine patterns for the

tuples belonging to the cell (line 8). It starts with cell (a1, ∗, ∗, ∗) and gathers the tuples

with a1 on dimension A as the Positive Class (PC) (line 10) and collects the remaining in a

Negative Class (NC) (line 11). Line 12 is another optimization which we will discuss later.

We then pass both the PC and NC classes to the DPMiner algorithm (line 14) which finds

the δ-discriminative patterns.

BUC is called recursively on the current partition to materialize cells, mine patterns and

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 27

output them. The algorithm further group-bys on dimension B of the tuples belonging to

the cell (a1, ∗, ∗, ∗) to materialize and mine patterns from the descendant cell (a1, b1, ∗, ∗).

The algorithm continues and further recurses on the descendant cells (a1, b1, c1, ∗) and

(a1, b1, c1, d1). Upon reaching the base cells, the algorithm backtracks to the nearest ancestor

cell, (a1, b1, c2, ∗). It continues in the same processing order as per Figure 3.1.

Optimizations

Line 12 is an optimization aimed at avoiding producing cells with identical tuples and

patterns. For example, the cells (a2, ∗, ∗, ∗) and (a2, b2, ∗, ∗) may contain the exact same

aggregated tuples. Since we have already computed the ancestor cell (a2, ∗, ∗, ∗) which

contains the exact same tuples and therefore the exact same PC and NC classes. It is

redundant to process the descendant cell (a2, b2, ∗, ∗) and to pass on to DPMiner to find

the same δ-discriminative patterns as cell (a2, ∗, ∗, ∗). Thus the duplicate checking removes

these kinds of redundant work to find the exact same patterns.

The above duplicate checking function generalizes the original BUC [4] optimization

called writeAncestors (lines 1- 4). The above duplicate checking also includes writeAnces-

tors with slight modifications, as a special case of the duplicate checking. Suppose we are

processing the cell (a2, ∗, ∗, ∗) and this cell contains only one tuple. As per the discussion

above, the descendant cells (a2, b2, ∗, ∗), (a2, b2, c2, ∗), and (a2, b2, c2, d2) will also contain

exactly the same tuple as the ancestor cell (a2, ∗, ∗, ∗) and hence the same patterns. These

four cells actually form an equivalent class. The baseline algorithm outputs the lower bound

cell (a2, ∗, ∗, ∗) together with the upper bound cell (a2, b2, c2, d2) and skips all intermediate

cells in this equivalent class.

Both optimization techniques shorten the running time and reduce the number of output

cells. Experiments conducted in [4] found out that in real-life data warehouses, about 20%

of the aggregates contain only one tuple.

In addition to the optimizations made in the baseline algorithm [20], we also altered

the algorithm such that only one output file was written consisting of all the cells and the

patterns associated to them rather than one file per cell.

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 28

3.5 Adapting DPMiner for Distinct Patterns

Given the dynamic set of PC and NC classes for each cell, DPMiner will carry out the

pattern mining task. It mines frequent generators and closed patterns for both classes by

executing the computational steps in Section 3.3.

In DPMiner, the class label distribution of an itemsetX in datasetDi is denoted ni(X) =

|fD(X) ∩Di| with i = 1, 2, ..., k, where for transaction T in datasetD, fD(Z) = {T ∈ D|Z ⊆

T} [15]. As we can see, this is the frequency of the itemsetX in the datasetDi. The following

is the definition of a δ-discriminative equivalence class as defined by [15].

Definition 3.5.1. Let D =
⋃k

i=1Di. Let EC be a frequent equivalence class of D, and

C be the closed pattern in EC. Let ni(C), i = 1, 2, ..., k, be the class label distribution

information of C. Then EC is a δ-discriminative equivalence class if there is i ∈ {1, 2, ..., k}

such that
∑

j 6=i nj(C) ≤ δ, where δ is usually a small integer number 1 or 2.

Recall that an itemset X is a distinct pattern of cell c if:

Supc(X)

Supc(X)
≥ ρ

To eliminate trivial cases, we will set the lower bound on Supc(X) such that Supc(X) > ρ.

We will also set an upper bound δ on Supc(X). We define this using the following theorem.

Theorem 3. Consider a multidimensional database MDB and ρ ≥ 0. For any itemset X

and cell c, if X is a distinct pattern of cell c, that is:

Supc(X)

Supc(X)
≥ ρ

then,

Supc(X) ≤ ∆,

where

∆ =
|MDB|

1 + ρ

Proof. Assume X is a distinct pattern of cell c. It is trivial to see that if Supc(X) < ∆, then

clearly the upper bound on Supc(X) is met. We will show: (1) if we take the maximum

of Supc(X) when Supc(X) reaches ∆, then X is still a distinct pattern and (2) if for any

λ > 0, if Supc(X) = ∆+ λ then X is not a distinct pattern of cell c.

(1) The maximum that Supc(X) can be is the entire set of tuples belonging to the cell (i.e.

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 29

the entire PC class). Since Supc(X) = ∆ (as maximum as possible) and since we know

from Property 2.2.1 that c.NC = c.PC, and c.PC = c.NC, the maximum Supc(X) be is

Supc(X) = |MDB| −∆ = |MDB| − |MDB|
1+ρ

. Thus we have:

|MDB| − |MDB|
1+ρ

|MDB|
1+ρ

≥ ρ

|MDB|+ρ|MDB|−|MDB|
1+ρ

|MDB|
1+ρ

≥ ρ

|MDB|+ ρ|MDB| − |MDB| ≥ ρ|MDB|

0 ≥ 0

(2) If for any λ > 0, if Supc(X) = ∆ + λ then X is not a distinct pattern of cell c. We

will show this by contradiction. Assume X is a distinct pattern of c. Let Supc(X) be as

maximum as possible, that is Supc(X) = |MDB| − |MDB|
1+ρ

and Supc(X) = ∆ + λ, for any

λ > 0 that is Supc(X) = |MDB|
1+ρ

+ λ. Then we have:

|MDB| − |MDB|
1+ρ

|MDB|
1+ρ

+ λ
≥ ρ

|MDB|+ρ|MDB|−|MDB|
1+ρ

|MDB|+λ+λρ

1+ρ

≥ ρ

|MDB|+ ρ|MDB| − |MDB| ≥ ρ|MDB|+ ρλ+ ρ2λ

0 ≥ ρλ(1 + ρ)

As we can see the only case that this holds is if ρ = 0. However, from the Theorem 2 we

know if ρ = 0 then the concentrate threshold α = 100%. Which means that Supc(X) 6> ∆.

In particular, if ρ = 0 then Supc(X) = 0 as 100% means the negative class cannot contain

any itemset X. Contradiction.

The following example illustrates the bounds on the supports.

Example 3.5.1. Suppose we are given a multidimensional database MDB, an itemset X

that is a distinct pattern of cell c given ρ = 3. If we let |MDB| = 100 then Supc(X) must

be greater than 3 and Supc(X) must be less than 25. Suppose Supc(X) = 25. We can see

that even if Supc(X) is at its maximum such that Supc(X) = 75, the distinctiveness ratio

still holds where 75
25 ≥ 3. However, if we set Supc(X) = 26, we can see that 74

26 6≥ 3.

CHAPTER 3. RELATED WORK AND BASELINE ALGORITHM 30

For each aggregate cell, we only need to keep track of the positive class transactions in

a bitmap, where each bit represents if the transaction is in the positive class or not. At the

worst case, the bitmap would contain k bits where k is the total number of transactions in

the multidimensional database. Since the recursive depth of BUC is at most n where n is

the total number of dimensions, it can be seen that the maximum number of bits we would

need to keep would be k ∗n. In addition, in reality the number of tuples in the positive class

would decrease at each level, as not all tuples are expected to be in only one cell. Thus, as

the dataset grows sparse, the total number of tuples at each level in the BUC processing

tree decreases. Some bitmap compression algorithm can be applied at each level in the BUC

processing tree.

After the mining process, the most general closed patterns (i.e., the ones that have the

shortest length among others in its equivalent class) are determined as the so-called non-

redundant δ-discriminative patterns. Thus using the frequency of itemsets in the PC and

NC classes, we can check if DR(X) ≥ ρ and thus determine if X is a distinct pattern of

cell c.

Mining disjunctive association rules can be a byproduct of our algorithm. An example

of a disjunctive association rule is if an itemset X is bought by the customer group of males

from Toronto or Vancouver. We can implement this with some minor revision. Sort all

those cities according to the ratio of their support. Then you accumulate the total support

of the cities and if they pass the threshold than it is a distinct pattern.

3.6 Summary

In this chapter, we discussed the Bottom Up Cubing process in Section 3.1. Then in Section

3.2, we introduced Frequent Pattern Mining and in Section 3.3 the DPMiner algorithm.

Then in Section 3.4, we showed and discussed the execution of the baseline algorithm [20].

Finally, we concluded the chapter by showing how we use DPMiner to extract distinct

patterns.

Chapter 4

Pruning Techniques

In this chapter we present several effective pruning techniques. We name this advanced al-

gorithm MDPM (Multidimensional Distinct Pattern Miner). In Section 4.1 we demonstrate

how we can use an ancestor cell’s distinct patterns to derive the descendant cell’s distinct

patterns. In Section 4.2 we discuss how we can use the support of a parent cell to prune out

descendant cells. In Section 4.3 we show how we can reduce the number of transactions un-

der consideration by turning off the transactions that no longer belong to an aggregate cell.

In Section 4.4 we find that by limiting the distinct patterns to finding the least generalized

cell, we realize an optimization. Finally in Section 4.5 we summarize the findings.

4.1 Calculating Distinct Patterns in Descendants from An-

cestors

In the problem formulation (Section 2.5) we discussed the use of the antimonotonic property

to prune descendant cells based on ancestor cells. We can use a similar notion to derive

the descendant cell’s distinct patterns based on the ancestor cell’s distinct patterns. From

BUC, given two cells c1 and c2 such that c1 ≻ c2 we know that c2.PC ⊆ c1.PC. Since our

target cell c2 is based on only a selected set of tuples from c1, it can be seen that the distinct

patterns of c2 must also be a subset of distinct patterns of c1. We formally state this in the

following theorem.

Theorem 4. Given cells c1 and c2 such that c1 ≻ c2. If X is a distinct pattern in c2, then

X is also a distinct pattern in c1.

31

CHAPTER 4. PRUNING TECHNIQUES 32

Proof. Let c1 be the cell based on the set of tuples aggregated on dimension A. Let c2 be

a child cell of c1 based on the set of tuples aggregated on dimensions A and B. From the

definition of BUC, we can see:

c2.PC ⊆ c1.PC (4.1)

For contradiction, assume that itemset Y be a DP in c2 and not in c1. From Equation 4.1

we can state:

Supc2(Y) ≤ Supc1(Y)

Supc2(Y) ≥ Supc1(Y)
(4.2)

We can define the Distinctiveness Ratio of both cells as follows:

DRc2(Y) = Supc2(Y)/Supc2(Y)

DRc1(Y) = Supc1(Y)/Supc1(Y)

From Equation 4.2, we can state:

DRc2(Y) ≤ DRc1(Y) (4.3)

From the definition of DP, in order for Y to be an DP of cell c2, we must have DRc2(Y)

≥ ρ. If this holds then based on equation 4.3, DRc1(Y) ≥ ρ. Thus Y is also a distinct

pattern of c1. Contradiction.

Corollary 1. Let Y be the set of DPs in the cell c1. Let X be the set of DPs in a child

cell b1. From Theorem 4, we can also state that X ⊆ Y

The following example illustrates Theorem 4.

Example 4.1.1. Using Table 2.2. Suppose cell c1 = (a1, ∗, ∗, ∗) and cell c2 = (a1, ∗, ∗, l1).

We can see that c1 ≻ c2, c1.PC = {{t1, t2, t3, t4}, {t2, t3, t4}, {t1, t3, t4}, {t2, t3, t4}, {t2, t4, t5}}

and c2.PC = {{t1, t2, t3, t4}, {t2, t3, t4}, {t2, t4, t5}}. Thus c1.PC ⊆ c2.PC. Given ρ = 1,

consider the itemset X = {t2, t3, t4}. The distinctiveness ratio of X in c1 is 3/1 ≥ 1 and

thus X is a distinct pattern of c1. The distinctiveness ratio of X in c2 is 2/2 ≥ 1 and thus

X is a distinct pattern of c2. Now consider an itemset that is a DP in c1 but not a DP in

c2. Given ρ = 1, consider the itemset X ′ = {t1, t3, t4}. The distinctiveness ratio of X ′ in c1

is 2/2 ≥ 1 and thus X ′ is a distinct pattern of c1. However, the distinctiveness ratio of X in

CHAPTER 4. PRUNING TECHNIQUES 33

c2 is 1/3 6≥ 1 and thus X ′ is not a distinct pattern of c2. We cannot find any itemset that

is a distinct pattern in c2 and not a distinct pattern in c1. Thus distinct patterns of a child

cell is a subset of its parent cell. Figure 4.1 shows a snapshot of the data structures based

on this example.

Implementation

We create two structures, FirstLevelDistinctPatterns and PSubData.

FirstLevelDistinctPatterns stores the distinct patterns of the 1-D aggregate cells and

PSubData stores all the transactions of the 1-D group-bys. Recall the pseudo-code for

the baseline algorithm in Section 3.4. Line 14 now computes all the distinct patterns

of only 1-D aggregate cells. Upon discovery of a distinct pattern X, an object of type

FirstLevelDistinctPatterns F is created and is inserted into the list of

FirstLevelDistinctPatterns objects. We then find all the transactions Ti from PSubData

such that X ⊆ Ti and make a pointer from F to all the transactions Ti.

Now we have all the distinct patterns of 1-D cells and the transactions associated to

them. Based on Theorem 4, we can derive a descendant cell’s distinct patterns from the

ancestor cell. The descendant cell contains only the transactions belonging to the group by

on that particular dimension. We add a boolean variable called turned off to PSubData.

The turned off flag is set to true if a transaction is not part of the current group by. Thus,

while doing the group by operation, we set the turned off flag to true or false depending

on whether a transaction is in this group by or not. Thus, while traversing through the

list of distinct patterns from FirstLevelDistinctPatterns, we can check the transactions

associated with each of the distinct patterns to see if that particular transaction is turned off

or not. If it is turned off, then it is part of the negative class and thus reduces the support of

this distinct pattern by 1. We can now calculate the supports of the distinct patterns in the

descendant cell’s negative class and positive class. Thus we can compute the distinctiveness

ratio and test if a particular distinct pattern from the list of FirstLevelDistinctPatterns

is also a distinct pattern of a descendant cell. Figure 4.1 shows a snapshot of the data

structures from Example 4.1.1.

CHAPTER 4. PRUNING TECHNIQUES 34

2.A 10.S 14.J 16.J

3.AS 7.AJ 9.AL 11.SJ

1.All

4.ASJ 6.ASL 8.AJL 12.SJL

13.SL 15.JL

5.ASJL
Turned_off False

Txn: {t1,t2,t3,t4}

Turned_off False

Txn: {t2,t3,t4}

Txn: {t1,t3,t4}

Txn: {t2,t3,t4}

Txn: {t2,t4,t5}
Turned_off False

DP’s of cell (a ,*,*,*)

Size = 3

Support = 2

Size = 3

Support = 2

Size = 3

Support = 2

Transactions Involved in

1 DP’s of cell (a1

Turned_off True

Turned_off True
X

X

,*,*,l)

DP= {t2,t3,t4}

DP= {t1,t3,t4}

DP= {t2,t4}

1

Figure 4.1: Distinct Patterns of descendant cells using ancestor cells, based on Example
4.1.1.

4.2 Pruning Child Cells Based on the Support of the Parent

Cell

This optimization is also based on the fact that the transactions of a descendant cell is a

subset of its parent cell. However, in this optimization we will look at the transactions of

descendant cell as contributing to the support of the itemset in the parent cell. That is, the

parent’s transactions are made up of the sum of all descendant’s transactions. Using this

fact, we can prune some of the child cells of the parent. As we traverse the child cells of a

parent, if we traverse a particular child at which point we know the rest of the cells cannot

hold the distinctiveness ratio, then we can stop traversing the remaining cells. We formalize

this in Theorem 5.

Definition 4.2.1. (Child Support Ratio). Given cells c1 and bi for i = 1, ..., n where n is

the total number of child cells of c1 and c1 ≻ bi. If X is a distinct pattern of c1. Then for

any child cell bi, the Child Support Ratio (CSR) is defined as:

CSR(X) =
Supc1(X)

Supc1(X) +
∑i

k=1 Supbk(X)

Using the following theorem, we show how we can use the child support ratio to prune

out some of the child cells.

CHAPTER 4. PRUNING TECHNIQUES 35

Theorem 5. Given cells c1 and bi for i = 1, ..., n where c1 ≻ bi and n is the total number

of child cells of c1. Let X be a distinct pattern of c1. If for child cell bi, CSR(X) < ρ, then

for all child cell bj where j ≥ i+1,...,n :

ρ <
Supbj (X)

Supbj (X)

Proof. Based on the definition of DP we know that:

Supc1(X)

Supc1(X)
≥ ρ

It can be see that:

Supc1(X) +

i+1∑

k=1

Supbk(X) ≥ Supc1(X) +

i∑

k=1

Supbk(X) (4.4)

We also know the total support of X is Supc1(X) + Supc1(X). Using Equation 4.4, if:

Supc1(X)

Supc1(X) +
∑i

k=1 Supbk(X)
< ρ,

There will be no more child cells that can satisfy:

Supbj (X)

Supbj (X)
≥ ρ

Where j = i + 1, ..., n. Thus we can stop checking the remaining child cells of c1 to see if

itemset X is a DP of the child cell bj for j ≥ i+1.

We will illustrate this theorem using Example 4.2.1 based on the simple Table 4.1.

Example 4.2.1. Using Table 4.1, let itemset X = {t1, t2, t3} and ρ = 3. Suppose we are

given cell c1 = {a1, ∗} and cells si = {a1, bi} where i = 1, ..., n and c ≻ si. Now using

Theorem 5, as we traverse the child cells we will check the Child Support Ratio and see

whether the following holds:

Supc1(X)

Supc1(X) +
∑i

k=1 Supsk(X)
< ρ

For child cell s1 = {a1, b1}, the Child Support Ratio is 8
0+1 6< ρ and so we continue to the

next child. For child cell s2 = {a1, b2}, the Child Support Ratio is 8
0+(1+1) 6< ρ and so we

continue to the next child. However, for child cell s3 = {a1, b3}, the Child Support Ratio

is 8
0+(1+1+1) < ρ and so we can stop checking the remaining child cells. There will not be

CHAPTER 4. PRUNING TECHNIQUES 36

A B Transaction

a1 b1 {t1, t2, t3}

a1 b2 {t1, t2, t3}

a1 b3 {t1, t2, t3}

a1 b4 {t1, t2, t3}

a1 b4 {t1, t2, t3}

a1 b4 {t1, t2, t3}

a1 b4 {t1, t2, t3}

a1 b5 {t1, t2, t3}

Table 4.1: Sample table to demonstrate Theorem 5

another child that holds the distinctiveness ratio threshold even though cell s4 = {a1, b4}

contains the majority of support for X. For cell s4, the DR(X) = 4
3 < ρ and so X is not

a DP of s4. Figure 4.2 shows a snapshot of the FirstLevelDistinctPatterns after the

processing of cell s3.

Implementation

Given an m-D cell, we define the level of that cell to be m. We modify the

FirstLevelDistinctPatterns structure such that each distinct pattern will contain an

array of child supports of size equal to the total number of dimensions in MDB. We keep

a running total of the supports of the descendants in the level position of the array. Each

time we traverse the FirstLevelDistinctPatterns, if for distinct patternX, CSR(X) < ρ,

then we continue to the next DP and stop checking the remaining child cells for X. Figure

4.2 shows the child supports array within the FirstLevelDistinctPatterns object. As

can be seen, since the dimension is two, the array size is two. This figure is a snapshot after

the child supports was updated during the processing of cell s3 from Example 4.2.1. As

we can see, 2.6 is less than ρ which is 3 and we can stop processing the remaining cells for

this distinct pattern in the AB cuboid.

4.3 Sorting by Turned off Transactions

This optimization is also based on Theorem 4. Normally, as we group by we collect the

set of transactions belonging to the PC value of the cell. However, as we group by on 2-D

CHAPTER 4. PRUNING TECHNIQUES 37

DP’s of cell (a
1
,b)

Txn: {t1,t2,t3}

Turned_off True

Txn: {t1,t2,t3}

Turned_off True

Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Txn: {t1,t2,t3}

Turned_off False

Turned_off True

Transactions Involved in

X

X

X

X

X

X

X

3.AB

2.A 4.B

1.All

3

child_supports = [0, 2.6]

Support = 8
Size = 3

DP’s of cell (a
1
,*)

DP = {t1,t2,t3}

Figure 4.2: Shows a snapshot of the FirstLevelDistinctPatterns after child supports

has been updated during the processing of cell s3 from Example 4.2.1

cells and their descendants, we determine whether or not a transaction in this particular

cell was turned off when its parent was processed. If we sort the transactions using the

turned off flag such that all non turned off transactions are at the top of the list and turned

off transactions are at the bottom of the list. Then, as we traverse the list of transactions

of a distinct pattern, at the first point when a turned off transaction is seen, we can stop

checking the remaining transactions. The following example illustrates this optimization.

Example 4.3.1. Using Table 4.1. Let itemset X = {t1, t2, t3}. Suppose we are performing

a group-by on dimension B of the tuples belonging to cell c1 = {a1, ∗}. As we get to the cell

s5 = {a1, b5}, under normal circumstances the transaction belonging to this cell’s PC will

be at the very bottom. However, since we sort by the turned off transactions during the

group-by, the transaction belonging to this cell’s PC are at the very top of the list. Thus

as we traverse through the list of distinct patterns, we need only to check two transactions,

the first and the second. Upon checking the second, we find it is turned off and thus all

remaining transactions are also turned off. At this point we can stop checking for the

support of that particular DP in this cell. Figure 4.3 shows a snapshot of the list before

and after the sort.

CHAPTER 4. PRUNING TECHNIQUES 38

Size = 3
Support = 8

1

Turned_off True
Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Turned_off True

Txn: {t1,t2,t3}
Turned_off True

Txn: {t1,t2,t3}

Txn: {t1,t2,t3}
Turned_off False

Transactions Involved in
DP’s of cell (a

1
,b

5
)

DP’s of cell (a ,*)

Size = 3
Support = 8

DP’s of cell (a1 ,*)

DP’s of cell (a
1
,b

5
)

Txn: {t1,t2,t3}

Turned_off True

Txn: {t1,t2,t3}

Turned_off True

Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Turned_off True
Txn: {t1,t2,t3}

Txn: {t1,t2,t3}

Turned_off False

Turned_off True

Transactions Involved in

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DP = {t1,t2,t3} DP = {t1,t2,t3}

Figure 4.3: Sort by turned off transactions brings the non turned off transactions to the top
of the list.

Implementation

As we group by on a descendant cell of a 1-D cell, we traverse each transaction belonging

to that group by. PSubData contains the entire set of transactions from its parent 1-D

cell. When a transaction in the descendant group-by is not a part of PSubData, we set the

turned off flag to true. We then use counting sort over a range of {0, 1} where 0 = false

and 1 = true which means the temp array in counting sort contains 2 elements. After the

counting sort, the transactions that are set to turned off are at the bottom of the list and

the transactions that are not turned off are at the top. As we traverse each child, we only

pass the total number of transactions of the immediate parent cell as the size of the array to

count sort. We know that the remaining transactions were set to turned off by the parent

cell prior to materializing the current cell.

CHAPTER 4. PRUNING TECHNIQUES 39

4.4 Max Group-by of Distinct Patterns

In this section we discuss an optimization that not only reduces redundant output of distinct

patterns but also reduces the number of distinct patterns to traverse when finding distinct

patterns of child cells of 1-D cells. We wish to output the least generalized group by that

satisfies the distinctiveness ratio. That is, given two cells c1 and c2 such that c1 ≻ c2 and

an itemset X that is a distinct pattern of both c1 and c2. We wish to output only c2 as the

cell for distinct pattern X, provided that X is not a distinct pattern of a descendant cell of

c2. The following example illustrates these ideas.

Example 4.4.1. Using Table 2.2. Suppose we have the following cells c1 = (a1, s1, ∗, ∗),

c2 = (a1, ∗, j1, ∗) and c3 = (a1, s1, j1, ∗) such that c3 ≺ c1 and c3 ≺ c2. Given ρ = 1, itemset

X = {t1, t3, t4} is a distinct pattern in c1, c2, and c3. We wish to output c3 as the least

generalized cell that still satisfies the distinctiveness ratio.

We realize another optimization when we consider that for an m-D cell where m > 1,

there is more than one parent for each cell. This can be seen by referring to Figure 2.1.

Based on Corollary 4.1, if X is a DP in a cell c1 where c1 ≺ pi where pi is the parent cell

of c1 for 1 ≤ i ≤ m, then we can ignore the traversal of this distinct pattern X in the

parent cells pi for 2 ≤ i ≤ m. That is, we ignore the traversal of this DP from the list of

FirstLevelDistinctPatterns if the current cell is traversed after c1 and is a parent of cell

c1.

Example 4.4.2. Using Figure 4.4 and referring back to Example 4.4.1. We can see that

cuboid AJ is processed after cuboid ASJ. Thus when looking at cell c2, since X is a distinct

pattern of cell c3 and c3 ≺ c2, thus X must also be a DP in c2 using Corollary 4.1. Hence

we can stop traversing this distinct pattern X in cell c2. Figure 4.4 shows the level of the

distinct pattern X is 3 and since we are traversing a cell that is only level 2 we can ignore

any distinct patterns which have a level higher than the current level.

Implementation

Given an itemset X such that X is a distinct pattern of a particular cell, we initially set the

level of each distinct patterns of FirstLevelDistinctPatterns to be the level of the 1-D

cell which is 1. As we traverse the descendant cells of the 1-D cell, we update the level of

CHAPTER 4. PRUNING TECHNIQUES 40

Turned_off False

Txn: {t1,t2,t3,t4}

Txn: {t2,t3,t4}

Txn: {t2,t4,t5}
Turned_off False

DP’s of cell (a ,*,*,*)

Size = 3

Support = 2

Transactions Involved in

1

Turned_off True

DP’s of cell (a1,*,j1,*)

...

...

...

Turned_off False

Txn: {t1,t3,t4}

Turned_off True

Txn: {t2,t3,t4}
X

X

X

15.JL13.SL11.SJ9.AL7.AJ3.AS

12.SJL8.AJL6.ASL4.ASJ

5.ASJL

16.J14.J10.S2.A

1.All

level = 2

level = 0

level = 1

level = 3

level = 4

level = 3

DP= {t1,t3,t4}

Figure 4.4: Showing a snapshot of FirstLevelDistinctPatterns after processing the cells
from Example 4.4.1

each distinct pattern. We set the level of the distinct pattern to the level of the current cell,

as long as the distinctiveness ratio holds and the level of the current cell is not less than the

level of the distinct pattern. Thus, looking back at the previous example, although itemset

X is a distinct pattern of cell c2, the level of c2 is less than the level of c3. Referring back

to the BUC group-by ordering in Figure 3.2, we would have materialized the cell c3 before

c2. Thus we do not need to consider this distinct pattern for c2 and so we ignore it when

traversing the list of distinct patterns from FirstLevelDistinctPatterns.

We also exploit the antimonotonicity property here. As we traverse the 1-D cell’s distinct

patterns in an m-D cell, if the m minus the level of the distinct pattern is greater than

one, then we can ignore this distinct pattern and continue to the next. That is, we had

considered this distinct pattern in (m−1)-D cells and had concluded that they do not meet

the distinctiveness ratio and so we didn’t update the level to m− 1. Thus, we can say that

by the antimonotonicity property of BUC that this distinct pattern will not be a DP in any

m-D cell.

4.5 Summary

In this chapter we discussed the several interesting pruning techniques to the baseline algo-

rithm. We started off with the major optimization where we reduce the calls to DPMiner

CHAPTER 4. PRUNING TECHNIQUES 41

by realizing that child cells distinct patterns are a subset of the parents distinct patterns.

We then used the support of the distinct pattern in the parent cell and the supports of the

distinct pattern in the child cells of the that particular parent to eliminate the traversal of

some of the child cells. Next we sorted based on the transactions of the group by, whether

it was turned off in that particular group by or not. Finally we discussed the need to reduce

the redundant output of distinct patterns. That is, we know that a distinct pattern of a

child cell must also be a distinct pattern of a parent cell. Thus we only output the least

generalized group-by for a distinct pattern. In doing so, we realized that we can also avoid

traversing some distinct patterns of the parent cells based on Corollary 4.1.

Chapter 5

Experimental Results and

Performance Study

In this chapter, we present the empirical evaluation comparing the baseline algorithm and

MDPM. All experiments were conducted on a PC running Ubuntu 10.04 with an Intel Core

2 Duo CPU, 3.0 GB memory and a 400 GB hard disk. The programs were implemented in

C++ using Eclipse 3.5 with CDT. The DPMiner source code was kindly given to us by Dr.

Guimei Liu, one of the authors of [15].

5.1 The Dataset

To the best of our knowledge, there are no widely accepted benchmark datasets that consist

of a multidimensional set of attributes to transactions. Thus we created synthetic multidi-

mensional datasets using five real benchmark datasets. We created the dimensions using a

generator based on Zipf distribution. The transaction data are five widely-used benchmark

datasets from the Frequent Itemset Mining Implementations (FIMI) Repository. These

datasets from the UCI repository and PUMSB were prepared by Roberto Bayardo. The

characteristics of the datasets are shown in Table 5.1.

We synthesized the datasets by appending the dimensions with the bench mark trans-

actions.

42

CHAPTER 5. EXPERIMENTAL RESULTS AND PERFORMANCE STUDY 43

Data Set Number of Tuples Number of Items Average Transaction Length

Chess 3,196 76 37

Mushroom 8,124 120 23

Pumsb 49,046 2,113 74

Connect 67,557 150 43

Accidents 340,184 572 45

Table 5.1: Characteristics of the benchmark datasets

5.2 Comparative Performance Study and Analysis

For the default test case we used 2 as the distinctiveness threshold on a four dimensional

MDB where the cardinality of each dimension was four and was generated using two as the

Zipf distribution parameter. We ran five types of test cases on the synthesized datasets:

• varying the number of tuples

• varying the distinctiveness threshold

• varying the number of dimensions

• varying the cardinality of the dimensions

• varying the distribution of the dimensions

In addition, we also ran the datasets against just the BUC algorithm. Such that upon

materializing the cell, it does not pass the aggregate measure of the cell to DPMiner to

discover any distinct patterns. This is to test the performance of our BUC implementation.

We decided not to test DPMiner by itself as it has been extensively tested in [15] using the

benchmark datasets against many well known frequent pattern mining algorithms such as

LCM3 [25] and FPClose [9].

5.2.1 Evaluating the BUC Implementation

To test BUC, we created a set of datasets, varying the number of tuples based on the

accidents data. As can be seen from Figure 5.1, the running time of the BUC algorithm

is approximately proportional to the number of tuples. That is, the running time of BUC

grows linearly as the size of the input data increases. The use of the linear counting sort

algorithm is mainly attributed to the linearity in the running time of BUC. It was shown that

CHAPTER 5. EXPERIMENTAL RESULTS AND PERFORMANCE STUDY 44

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

1

2

3

4

5

6

7

8

9

10

Number of Tuples

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

Accidents Dataset:
Runtime Vs Number of Tuples

(100000, 2.48)

(300000, 8.59)

(200000, 5.44)

(1000, 0.03)

(5000, 0.07)

(10000, 0.1)

(50000, 1.04)

Figure 5.1: Runtime of the BUC implementation.

partitioning and sorting data were the most time consuming steps in a cubing process [4]. It

is also notable that the heuristics such as the writeAncestors becomes of little significance

as the number of tuples grows. This is because as the number of tuples increase, the MDB

becomes less sparse. Thus, at each point a descendant cell will most of the time contain

tuples and thus we cannot simply use writeAncestors as the descendant’s measure might

differ.

5.2.2 Varying the number of tuples

The default test case would test the varying number of tuples scenario. Each dataset from

Table 5.1 contains different number, of tuples with accidents being the largest with 340,184

tuples. The results of the experiments are shown in Table 5.2. As can be seen, MDPM

is considerably faster than the baseline algorithm. When considering the connect dataset,

our algorithm is roughly 3 times faster than the baseline algorithm. When considering the

Pumsb dataset, which contains a very large number of distinct itemsets, our algorithm is at

least 20 times faster. The reason for such a behavior is that MDPM does not call DPMiner

for each cell that is materialized. In a worst case scenario without any concept hierarchies

CHAPTER 5. EXPERIMENTAL RESULTS AND PERFORMANCE STUDY 45

Data Set MDPM Runtime (s) No. of DP No. of Cells Baseline Runtime (s)

Chess 1.46 4 3 27.88

Mushroom 3.82 9 4 39.77

Pumsb 285.95 353 56 6464

Connect 290.98 6 4 978.35

Accidents 8396 36 12 N/A

Table 5.2: Runtime comparison between the Baseline and MDPM algorithm for each of the
benchmark dataset

in the cube, the baseline algorithm would call DPMiner 2n times where n is the number of

dimensions plus the number of cells in each of the group-bys. However, MDPM would only

call DPMiner on the 1-D cells. That is, MDPM would call DPMiner
∑n

i=1Cardinality(i)

times. For the accidents test case, the baseline algorithm terminated with an out of memory

error for the accidents dataset where as MDPM completed the run in 8,396 seconds.

5.2.3 Varying the support threshold

In this test case, we varied the distinctiveness threshold rate and kept the remaining default

parameters the same. That is, dimension = 4, cardinality = 4 and distribution = 2. We

ran five test cases where ρ was set to 1, 2, 3, 4 and 5. As can be seen in Figure 5.2, MDPM

was far superior to the baseline. It was at least 10 times faster for the chess, mushroom and

pumsb datasets and 3 times faster for the connect dataset. The baseline algorithm failed to

complete for the accidents dataset. It is also noticeable that as we set the threshold lower,

we produce much more distinct patterns. That is when ρ = 1, we want to find itemsets such

that 50% of the itemset occur in a particular cell. That is, by setting the threshold lower,

we are looking at a much larger set of frequent itemsets.

5.2.4 Varying the number of dimensions

Next we tested by varying the number of dimensions and keeping the rest of the parameters

the same, with the distinctiveness threshold = 2, cardinality = 4 and distribution = 2. We

again ran five test cases where the number of dimensions were set to 2, 3, 4, 5 and 6. As can

be seen from Figure 5.3, MDPM is still considerably faster than the baseline algorithm. The

most notable point in this experiment was when we set the number of dimensions low. Then

the baseline algorithm was comparable to, if not better than MDPM. This is because of the

CHAPTER 5. EXPERIMENTAL RESULTS AND PERFORMANCE STUDY 46

1 2 3 4 5
0

10

20

30

40

50

Distinctiveness Threshold

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)
Chess Dataset:

Runtime Vs Distinctiveness Threshold

1 2 3 4 5
0

10

20

30

40

50

Distinctiveness Threshold

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

Mushroom Dataset:
Runtime Vs Distinctiveness Threshold

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

Distinctiveness Threshold

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

Pumsb Dataset:
Runtime Vs Distinctiveness Threshold

1 2 3 4 5
0

500

1000

1500

Distinctiveness Threshold

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

Connect Dataset:
Runtime Vs Distinctiveness Threshold

1 2 3 4 5
0

5000

10000

15000

Distinctiveness Threshold

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

(e). Accidents Dataset:
Runtime Vs Distinctiveness Threshold

MDPM

Baseline Algorithm

DP: 124
Cells: 4

DP: 4
Cells:3

DP: 2
Cells:2

DP: 2
Cells: 2

DP: 0
Cells:0

DP: 112
Cells: 13

DP: 9
Cells:4

DP: 2
Cells: 2

DP: 0
Cells:0

DP: 0
Cells:0

DP: 144
Cells: 10

DP: 6
Cells: 4

DP: 0
Cells: 0

DP: 0
Cells: 0

DP: 0
Cells: 0

DP: 124
Cells: 17

DP: 50
Cells: 14

DP: 19
Cells: 10

DP: 7
Cells:5

DP: 2
Cells:2

DP: 0
Cells: 0

DP: 2635
Cells: 433

DP: 36
Cells: 12

DP: 210
Cells: 79

DP: 353
Cells: 56

Figure 5.2: Runtime comparison between the Baseline and MDPM algorithm by varying
support threshold

CHAPTER 5. EXPERIMENTAL RESULTS AND PERFORMANCE STUDY 47

exponential nature of the baseline algorithm. MDPM does have some overhead in keeping

the first level distinct patterns and ordering the transactions etc. Thus if you look at Figure

5.3(e), you can see that as the dimensions are set low, at 2 or 3, the baseline is faster than

MDPM. However, as the number of dimensions increase, the baseline runtime increases

exponentially. It can also be seen that this behavior only happens when the number of

tuples is large. If you look at Figure 5.3(a-d), the optimal algorithm is still considerably

faster than the baseline algorithm.

5.2.5 Varying the cardinality of the dimensions

In this test case, we varied the cardinality of the dimensions, with the distinctiveness thresh-

old = 2, dimension = 4, and distribution = 2. The cardinality of each of the dimensions

were set to 2, 4, 6, 8 and 10. Figure 5.4 shows the results of the experiments. For MDPM,

as the cardinality increased, the run time decreased. This is attributable to the fact that

when the cardinality of the dimensions is low, the MDB becomes more dense. Thus there

are more frequent patterns that are mined and the overhead of keeping the first level distinct

patterns increases. Even so, MDPM was still faster than the baseline in most cases. For the

accidents dataset, the baseline algorithm failed to return for all but the first test case where

cardinality = 2 where it was faster than MDPM. The baseline algorithm runtime increases

as the cardinality increases.

5.2.6 Varying the distribution of the dimensions

Finally, we varied the distribution of the dimensions with the distinctiveness threshold =

2, dimension = 4, and cardinality = 4. The distributions were set to 1, 1.5, 2, 2.5, and 3.

The goal of this experiment was to see how the runtime and the number of distinct pat-

terns change as the dimensions become evenly distributed amongst the cardinality. Figure

5.5 shows the results of the experiments. The runtime for both the optimal and baseline

algorithm were the same as varying the tuples test case. However, the number of distinct

patterns returned by the optimal algorithm increased as the distribution increased. This is

the logical result as the distribution increases, the dimensions become evenly distributed.

Thus, for a lot of the frequent itemsets, the distinctiveness ratio would hold. That is, the

transactions would be sparsely distributed in many cells and thus would not hold the apriori

property for that cell.

CHAPTER 5. EXPERIMENTAL RESULTS AND PERFORMANCE STUDY 48

2 3 4 5 6
0

10

20

30

40

50

Number of Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)
(a). Chess Dataset:

Runtime Vs Number of Dimensions

2 3 4 5 6
0

20

40

60

80

100

Number of Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

(b). Mushroom Dataset:
Runtime Vs Number of Dimensions

2 3 4 5 6
0

500

1000

1500

2000

Number of Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

(c). Pumsb Dataset:
Runtime Vs Number of Dimensions

2 3 4 5 6
0

500

1000

1500

2000

Number of Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)
(d). Connect Dataset:

Runtime Vs Number of Dimensions

2 3 4 5
0

0.5

1

1.5

2
x 10

4

Number of Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

(e). Accidents Dataset:
Runtime Vs Number of Dimensions

MDPM

Baseline Algorithm

DP: 36
Cells: 12

DP: 41
Cells: 17

DP: 1
Cells:1

DP: 5
Cells: 3 DP: 4

Cells: 3

DP: 2
Cells: 2

DP: 5
Cells: 2 DP: 7

Cells: 2

DP: 23
Cells: 4

DP: 9
Cells: 4

DP: 35
Cells: 6

DP: 20
Cells: 8

DP: 206
Cells: 30

DP: 274
Cells: 54

DP: 353
Cells: 56

DP: 429
Cells: 43

DP: 556
Cells: 82

DP: 0
Cells: 0

DP: 3
Cells: 3

DP: 6
Cells: 4

DP: 15
Cells: 4

DP: 34
Cells: 12

DP: 27
Cells: 6

DP: 1
Cells: 1

Figure 5.3: Runtime comparison between the Baseline and MDPM algorithm by varying
the number of dimensions of MDB on the five benchmark data sets

CHAPTER 5. EXPERIMENTAL RESULTS AND PERFORMANCE STUDY 49

2 4 6 8 10
0

10

20

30

40

50

Cardinality of the Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)
Chess Dataset:

Runtime Vs Cardinality of the Dimensions

2 4 6 8 10
0

100

200

300

400

500

Cardinality of the Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

Mushroom Dataset:
Runtime Vs Cardinality of the Dimensions

2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

Cardinality of the Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

Pumsb Dataset:
Runtime Vs Cardinality of the Dimensions

2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

Cardinality of the Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

Connect Dataset:
Runtime Vs Cardinality of the Dimensions

2 4 6 8 10
0

0.5

1

1.5

2
x 10

4

Cardinality of the Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

(e). Accidents Dataset:
Runtime Vs Cardinality of the Dimensions

MDPM

Baseline Algorithm

DP: 282
Cells: 8 DP: 4

Cells: 3
DP: 3
Cells: 2

DP: 3
Cells: 2

DP: 1
Cells: 1

DP: 426
Cells: 6

DP: 9
Cells: 4

DP: 5
Cells: 2

DP: 1
Cells: 1

DP: 1
Cells: 1

DP: 6020
Cells: 938 DP: 353

Cells: 56
DP: 225
Cells: 40

DP: 181
Cells: 31

DP: 212
Cells: 38

DP: 495
Cells: 14 DP: 6

Cells:4
DP: 1
Cells:1

DP: 2
Cells: 2

DP: 0
Cells:0

DP: 36
Cells: 12

DP: 17
Cells: 15 DP: 16

Cells: 10
DP: 10
Cells: 9

Figure 5.4: Runtime comparison between the Baseline and MDPM algorithm by varying
the cardinality of the dimensions of MDB on the five benchmark data sets

CHAPTER 5. EXPERIMENTAL RESULTS AND PERFORMANCE STUDY 50

1 1.5 2 2.5 3
0

10

20

30

40

Distribution of the Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)
Chess Dataset:

Runtime Vs Distribution of the Dimensions

1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

Distribution of the Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

Pumsb Dataset:
Runtime Vs Distribution of the Dimensions

1 1.5 2 2.5 3
0

500

1000

1500

Distribution of the Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)
Connect Dataset:

Runtime Vs Distribution of the Dimensions

1 1.5 2 2.5 3
0

5000

10000

15000

Distribution of the Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

(e). Accidents Dataset:
Runtime Vs Distribution of the Dimensions

1 1.5 2 2.5 3
0

10

20

30

40

50

Distribution of the Dimensions

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)

Mushroom Dataset:
Runtime Vs Distribution of the Dimensions

MDPM

Baseline Algorithm

DP: 27
Cells: 11

DP: 1
Cells: 1

DP: 3
Cells:2

DP: 4
Cells:3

DP: 18
Cells: 4

DP: 0
Cells: 0

DP: 4
Cells:3

DP: 9
Cells: 4

DP: 6
Cells: 4

DP: 0
Cells:0

DP: 0
Cells: 0

DP: 226
Cells: 32

DP: 275
Cells: 39

DP: 32
Cells: 12

DP: 36
Cells:12

DP: 41
Cells:6

DP: 64
Cells:10

DP: 35
Cells:7

DP: 26
Cells: 5

DP: 69
Cells: 7

DP: 56
Cells:17

DP: 70
Cells: 24

DP: 353
Cells: 56

DP: 492
Cells: 85

DP: 592
Cells: 116

Figure 5.5: Runtime comparison between the Baseline and MDPM algorithm by varying
the distribution of the dimensions of MDB on the five benchmark data sets

CHAPTER 5. EXPERIMENTAL RESULTS AND PERFORMANCE STUDY 51

5.3 Summary

In light of the above experiments, it can be seen by the series of extensive comparative

experiments that our proposed algorithm is indeed efficient compared to the baseline algo-

rithm. There are very few cases where the baseline algorithm is faster than MDPM, but

that occurs when we move towards a single dimensional database with a large number of

tuples. However, the problem we are trying to solve is for multidimensional databases and

in those cases our algorithm is much faster than the baseline algorithm.

Chapter 6

Conclusions

6.1 Summary of the Thesis

In this thesis, we defined a “distinct pattern” as a frequent itemset in which the absolute

support ratio is greater than a given distinctiveness threshold. Given a multidimensional

database, we presented a cube based algorithm to mine such distinct patterns. The idea was

based on emerging patterns [6]. An “emerging pattern” has the ratio of the relative supports

greater than a given threshold. The difference between distinct pattern and emerging pattern

is that distinct pattern uses the absolute support ratio of itemset X from D2 to D1 where

as emerging pattern uses the increase in growth rate of itemset X from D1 to D2. Cubing

was not considered in the original emerging pattern problem.

We use BUC as our cubing algorithm. BUC traverses each cuboid from the apex towards

the base. The reason for the choice of BUC is that it allows pruning during the construction

of the cubes using the Apriori property. As can be seen from the experimental results of

the BUC algorithm, it is quite a fast algorithm even when dealing with large datasets such

as the accidents dataset [8].

For frequent pattern mining, we used a well known algorithm called DPMiner [15]. This

algorithm was compared with LCM3 and FPClose and proved to be better than both [15].

DPMiner uses a modified version of FP-Trees to discover δ-discriminative equivalence classes

along with their associated class label distributions.

A baseline approach to mining a multidimensional database was presented which mined

every cell for distinct patterns. In a worst case scenario, this would call DPMiner 2n times

plus the number of cells in each of the group-bys. This exponential algorithm quickly

52

CHAPTER 6. CONCLUSIONS 53

becomes impractical as the number of dimensions or tuples increases. Thus, we proposed

another algorithm where we used the the Apriori property to prove that distinct patterns

of descendants must be a subset of their ancestors. Based on this, we drastically reduced

the number of calls to DPMiner to
∑n

i=1Cardinality(i). In Chapter 4, we presented other

ideas where we used the ancestors properties to prune out descendant cells.

Next, we conducted extensive experiments using synthetic data based on the following

five well known benchmark datasets from FIMI, chess, mushroom, pumsb, connect and

accidents. We varied the number of tuples, the support threshold, number of dimensions,

the cardinality of the dimensions and the distribution of the dimensions. As can be seen from

the empirical study, MDPM surpassed the baseline algorithm in all types of multidimensional

test cases.

6.2 Future Work

We have explored the BUC cubing and pruning based on Apriori. As future work, we can

investigate other types of cubing strategies to see if better alternatives exist. For example,

Star-Cubing [27] is known for its shared dimensions advantage. It combines the strengths

of BUC as well as MultiWay to perform the cubing. Although BUC is considered the most

efficient cubing algorithm for computing iceberg cubes, it would still be interesting to see if

other cubing algorithms present more pruning opportunities.

Although we explored the direct line of ancestor to descendant relationship, it might be

possible to explore, if we can construct sibling cell’s partial distinct patterns using a 1-D

cell. If such a case is possible, then we could produce the distinct patterns of other 1-D

cells using only the first dimension 1-D cell. This type of pruning might be possible using

Star-cubing.

Bibliography

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining Association Rules Be-
tween Sets of Items in Large Databases. In SIGMOD ’93: Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, pages 207–216, New York,
NY, USA, 1993. ACM.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association
Rules in Large Databases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo,
editors, Proceedings of the 20th International Conference on Very Large Data Bases,
VLDB, pages 487–499, Santiago, Chile, September 1994.

[3] James Bailey, Thomas Manoukian, and Kotagiri Ramamohanarao. Fast Algorithms for
Mining Emerging Patterns. In PKDD ’02: Proceedings of the 6th European Conference
on Principles of Data Mining and Knowledge Discovery, pages 39–50, London, UK,
2002. Springer-Verlag.

[4] Kevin Beyer and Raghu Ramakrishnan. Bottom-up Computation of Sparse and Ice-
berg CUBE. In SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pages 359–370, New York, NY, USA, 1999. ACM.

[5] Boling Ding et al. TopCells: Keyword-based Search of Top-k Aggregated Documents
in Text Cube. In ICDE ’10: Proceedings of the 26th International Conference on Data
Engineering, Long Beach, CA, USA, 2010. IEEE.

[6] Guozhu Dong and Jinyan Li. Efficient Mining of Emerging Patterns: Discovering
Trends and Differences. In KDD ’99: Proceedings of the fifth ACM SIGKDD Interna-
tional Conference on Knowledge discovery and data mining, pages 43–52, New York,
NY, USA, 1999. ACM.

[7] Guozhu Dong and Jinyan Li. Mining Border Descriptions of Emerging Patterns from
Dataset Pairs. Knowledge Information System, 8(2):178–202, 2005.

[8] Bart Goethals et al. Frequent itemset mining implementations repository. Website,
2003. http://fimi.cs.helsinki.fi/data/.

[9] Gosta Grahne and Jianfei Zhu. Fast algorithms for frequent itemset mining using
fp-trees. IEEE Trans. on Knowl. and Data Eng., 17(10):1347–1362, 2005.

54

BIBLIOGRAPHY 55

[10] Jim Gray et al. Data Cube: A Relational Aggregation Operator Generalizing Group-by,
Cross-tab, and Sub-totals. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.

[11] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2nd edition, 2006.

[12] Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns Without Candidate
Generation. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pages 1–12, New York, NY, USA, 2000. ACM.

[13] William Inmon. What Is A Data Warehouse, 1995.

[14] Laks V. S. Lakshmanan, Jian Pei, and Yan Zhao. QC-Trees: An Efficient Summary
Structure for Semantic OLAP. In SIGMOD ’03: Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data, pages 64–75, New York, NY,
USA, 2003. ACM.

[15] Jinyan Li, Guimei Liu, and Limsoon Wong. Mining Statistically Important Equiva-
lence Classes and Delta-discriminative Emerging Patterns. In KDD ’07: Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge discovery and data
mining, pages 430–439, New York, NY, USA, 2007. ACM.

[16] Cindy Xide Lin et al. Text Cube: Computing IR Measures for Multidimensional Text
Database Analysis. In ICDM ’08: Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, pages 905–910, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[17] Zhenhua Lin. Mining discriminative items in multiple data streams. Master’s thesis,
School of Computing Science, Simon Fraser University, January 2010.

[18] Guimei Liu, Jinyan Li, and Limsoon Wong. A New Concise Representation of Frequent
Itemsets Using Generators and A Positive Border. Knowledge and Information Systems,
17(1):35–56, 2008.

[19] Elsa Loekito, James Bailey, and Jian Pei. A Binary Decision Diagram Based Approach
for Mining Frequent Subsequences. Knowledge and Information Systems, 24(2):235–
268, 2010.

[20] Wei Lu. Integrating data cube computation and emerging pattern mining for multidi-
mensional data analysis. Technical report, DDP Capstone Report, School of Computing
Science, Simon Fraser University, April 2010.

[21] Christopher Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to In-
formation Retrieval. Cambridge University Press, 2008.

[22] Sébastien Nedjar, Alain Casali, Rosine Cicchetti, and Lotfi Lakhal. Emerging Cubes for
Trends Analysis in OLAP Databases. Lecture Notes in Computer Science, 4654:135–
144, 2007.

BIBLIOGRAPHY 56

[23] Jian Pei. Pattern-Growth Methods for Frequent Pattern Mining. PhD thesis, Simon
Fraser University, 2002.

[24] Jian Pei. Cmpt 843 lecture notes. Website, 2009. http://www.cs.sfu.ca/CC/843/jpei/.

[25] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. Lcm ver.3: collaboration of array,
bitmap and prefix tree for frequent itemset mining. In OSDM ’05: Proceedings of the
1st international workshop on open source data mining, pages 77–86, New York, NY,
USA, 2005. ACM.

[26] Lusheng Wang, Hao Zhao, Guozhu Dong, and Jianping Li. On the complexity of finding
emerging patterns. Theoretical Computer Science, 335(1):15–27, 2005.

[27] Dong Xin et al. Star-Cubing: Computing Iceberg Cubes by Top-down and Bottom-up
Integration. In VLDB ’2003: Proceedings of the 29th International Conference on Very
Large Data Bases, pages 476–487. VLDB Endowment, 2003.

[28] Duo Zhang et al. Topic Modeling for OLAP on Multidimensional Text Databases:
Topic Cube and Its Applications. Stat. Anal. Data Min., 2(56):378–395, 2009.

[29] Yan Zhao. Quotient Cube and QC-Tree: Efficient Summarizations for Semantic OLAP.
Master’s thesis, The University of British Columbia, 2003.

[30] Yihong Zhao, Prasad M. Deshpande, and Jeffrey F. Naughton. An Array-based Al-
gorithm for Simultaneous Multidimensional Aggregates. In SIGMOD ’97: Proceedings
of the 1997 ACM SIGMOD International Conference on Management of Data, pages
159–170, New York, NY, USA, 1997. ACM.

Index

aggregate cell, 9
aggregate funtion, 11
ancestor cell, 10
anti-monotonic property, 17
apex, 10
apriori, 21

base table, 10
Bottom up cubing (BUC), 19

child cell, 10
class label distribution, 28
closed pattern, 23
concentrate ratio, 15
concentrate threshold, 15
cuboid, 9

data cube, 9
delta-discriminative equivalence class, 28
descendant cell, 10
distinct pattern, 12
distinctiveness threshold, 12
DPMiner, 24

emerging pattern, 12
equivalent class, 24

FP-Growth, 22
frequent patterns, 21

generator, 23
group-by, 9
growth rate, 12

iceberg condition, 17

lattice of cuboids, 10

level, 36

minimal cell, 14

negative class, 26

olap, 9

parent cell, 10
positive class, 26

transaction, 8

57

